Permutationen und Ordnungen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:40 Fr 08.06.2007 | Autor: | julia.k |
Aufgabe | Beweisen Sie, dass jede Permutation [mm] \sigma \in [/mm] Sn sich als Produkt paarweise disjunkter Zyklen darstellen lässt. Bestimmen Sie die maximale Ordnung von Permutationen in Sn für n = 2, ..., 10 |
Hallo!
Wie man eine Permutation in paarweise disj. Zyklen zerlegt, weiß ich. Allerdings schaffe ich es nicht, das zu beweisen (ich glaube, das geht mit Induktion).
Zum zweiten Teil der Aufgabe:
Die Maximale Ordnung von Sn ist doch immer gleich n, denn die Ordnung eines Zykels (1,2,...,n) ist n. Oder gibt es doch Elemente mit höheren Ordnungen?
Vielen Dank für eure Hilfe!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:08 Sa 09.06.2007 | Autor: | felixf |
Hallo Julia!
> Beweisen Sie, dass jede Permutation [mm]\sigma \in[/mm]
> Sn sich als Produkt paarweise disjunkter Zyklen
> darstellen lässt. Bestimmen Sie die maximale Ordnung von
> Permutationen in Sn für n = 2, ..., 10
> Hallo!
>
> Wie man eine Permutation in paarweise disj. Zyklen zerlegt,
> weiß ich. Allerdings schaffe ich es nicht, das zu beweisen
> (ich glaube, das geht mit Induktion).
Erstmal: wenn du zwei disjunkte Zyklen hast, dann kommutieren diese. Das brauchst du bei dieser Aufgabe sehr oft.
Du kannst es konstruktiv beweisen:
- Zeige, dass man jede Permutation als Produkt von Zyklen schreiben kann.
- Zeige, dass man zwei nicht-disjunkte Zyklen zu einem Zykel zusammenfassen kann.
- Daraus folgt: hat man irgendeine Zerlegung, kann man solange Zyklen zusammenfassen (vorher passend tauschen, was bei disjunkten ja geht) so, dass nur noch disjunkte Zyklen uebrigbleiben (dies kannst du per Induktion nach der Zykelanzahl in einer Zerlegung machen).
> Zum zweiten Teil der Aufgabe:
> Die Maximale Ordnung von Sn ist doch immer
> gleich n, denn die Ordnung eines Zykels (1,2,...,n) ist n.
> Oder gibt es doch Elemente mit höheren Ordnungen?
Ja, gibt es. Es gibt zum Beispiel ein Element der Ordnung 20.
Zeige folgendes: Wenn man ein Element aus [mm] $S_n$ [/mm] hat, welches als Produkt von disjunkten Zyklen der Laengen [mm] $k_1, \dots, k_\ell$ [/mm] geschrieben werden kann, so ist die Ordnung der Permutation gerade [mm] $lcm(k_1, \dots, k_\ell)$, [/mm] also das kleinste gemeinsame Vielfache davon.
Um also die maximale Ordnung eines Elementes aus [mm] $S_{10}$ [/mm] zu berechnen, musst du zu jeder Zerlegung $10 = [mm] k_1 [/mm] + [mm] \dots [/mm] + [mm] k_\ell$ [/mm] (mit [mm] $k_i \ge [/mm] 1$; es reicht uebrigens, nur die Zerlegungen zu betrachten, wo hoechstens ein [mm] $k_i [/mm] = 1$ ist) das kleinste gemeinsame Vielfache berechnen und das groesste davon nehmen.
LG Felix
|
|
|
|