www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Pfadregel
Pfadregel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Pfadregel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Mi 29.03.2006
Autor: MauselMaus

Aufgabe
Geburtstagsproblem:
es sind n Personene in einem raum versammelt. Jemand stellt die Geburtstage dieser Personen fest.
Wie groß ist die wahrscheinlichkeit, dass mindestens 2 gleiche geburtstage auftreten?

hey,
ich verstehe die aufgabe nicht wirklich weil mich stört dass es keine genaue anzahl der personen gibt. Ich habe mir überlegt dass man die aufgabe sicherlich mit einem baumdiagramm lösen kann nur wie??
Ich hoffe mir kann jemand helfen.
gruß

        
Bezug
Pfadregel: Tipp
Status: (Antwort) fertig Status 
Datum: 21:12 Mi 29.03.2006
Autor: XPatrickX

Hallo!


Stell dir doch einfach mal vor es wären nicht n Personen im Raum, sonder 5. Du kannst ja mal rechnen wie groß die Wahrscheinlichkeit ist bei 5 Personen. Anschließend stellst du dir vor es wären 10 Personen im Raum. Welche Wahrscheinlichkeit liegt dann vor. Danach kannst du es z.B. noch bei 20 Personen versuchen rechnerisch herauszubekommen.

Anschließend kannst du dir mal überlegen, wie es wohl bei n Personen aussieht...

Die Personenanzahl von 5 und 10 Personen war natürlich frei gewählt, du kannst auch gerne andere Zahlen nehmen.

Gruß Patrick

Bezug
        
Bezug
Pfadregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Mi 29.03.2006
Autor: benta

Anmerkung: Die Frage gibt`s schon!

Hier nochmal die Antwort:
Mindestens zwei Personen bedeutet es können auch 3, 4, ... n am gleichen Tag Geburtstag haben. Die Wahrscheinlichkeit soll p sein.
Am besten du siehst dir die Gegenwahrscheinlichkeit an, dass niemand am gleichen Tag Geburtstag hat: q = 1-p

für q gilt:
Anzahl der Möglichkeiten ist [mm] 365^{n} [/mm]

Anzahl der günstigen Fälle:  [mm] \bruch{365!}{(365-n)!} [/mm]
(entspricht einer geordneten Stichprobe ohne Zurücklegen)

Wahrscheinlichkeit ist grundsätzlich definiert als Anzahl der möglichen dividiert durch die günstigen Fälle, also:

q =  [mm] \bruch{365!}{(365-n)!365^{n}} [/mm]

und für p:

p = 1 - [mm] \bruch{365!}{(365-n)!365^{n}} [/mm]


Für 30 Leute ergibt sich z.B. eine erstaunlich hohe Wahrscheinlichkeit von 70,6%

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de