Phasenbilder linearer Flüsse < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:20 Fr 12.06.2009 | Autor: | Rutzel |
Hallo
Hier:
Phasenbilder
werden die Phasenbilder linearer Flüsse skizziert. Dabei wird auf Seite 166 für den Fall von komplex konjugierten Eigenwerten im Abschnitt [mm] "\alpha\not=0" [/mm] die Unterscheidung [mm] \beta>0 [/mm] und [mm] \beta<0 [/mm] gemacht.
Aber: Wie soll man [mm] \beta [/mm] größer oder kleiner Null unterscheiden, wenn man als Eigenwerte [mm] \alpha\pm i\beta [/mm] hat?
Also Angenommen, die Matrix meines Differentialgleichungsystems hat die Eigenwerte [mm] 1\pm [/mm] i. Welches Phasenbild ist dann zu zeichnen?
Das für
a) a>0 und b>0
oder
b) a>0 und b<0
??
Viele Grüße,
Rutzel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:32 Sa 13.06.2009 | Autor: | Denny22 |
> Hallo
>
> Hier:
>
> Phasenbilder
>
> werden die Phasenbilder linearer Flüsse skizziert. Dabei
> wird auf Seite 166 für den Fall von komplex konjugierten
> Eigenwerten im Abschnitt [mm]"\alpha\not=0"[/mm] die Unterscheidung
> [mm]\beta>0[/mm] und [mm]\beta<0[/mm] gemacht.
Okay.
> Aber: Wie soll man [mm]\beta[/mm] größer oder kleiner Null
> unterscheiden, wenn man als Eigenwerte [mm]\alpha\pm i\beta[/mm]
> hat?
Ich verstehe nicht genau, was Du wissen möchtest. Du hast den Eigenwert [mm] $\alpha+i\beta$. [/mm] Zunächst musst Du unterscheiden ob [mm] $\alpha\neq [/mm] 0$ oder [mm] $\alpha=0$ [/mm] ist, d.h. ob der Realteil deines Eigenwerts vorhanden ist oder verschwindet.
[mm] $\underline{\alpha\neq 0:}$ [/mm] Im Falle des nichtverschwindenden Realteils, d.h. [mm] $\alpha\neq [/mm] 0$, musst Du anschließend [mm] $\beta<0$ [/mm] und [mm] $\beta>0$ [/mm] unterscheiden. Der Grund dafür liegt in der asymptotischen Dynamik des Systems. Wie Du erkennen kannst liegen in beiden Fällen Strudel vor. Dabei reguliert [mm] $\beta$ [/mm] die Richtung, in der die Lösungstrajektorien den Ursprung umlaufen, d.h. im (falls [mm] $\beta>0$) [/mm] oder entgegengesetzt (falls [mm] $\beta<0$) [/mm] des Uhrzeigersinns. [mm] $\alpha$ [/mm] hingegen reguliert die Stabilität des Strudels, d.h. für [mm] $\alpha>0$ [/mm] laufen die Lösungstrajektorien nach außen und folglich ist der Studel instabil. Für [mm] $\alpha<0$ [/mm] laufen die Lösungstrajektorien in den Fixpunkt, der sich in der Mitte befindet, und folglich ist der Strudel stabil.
[mm] $\underline{\alpha=0:}$ [/mm] Im Falle [mm] $\alpha=0$ [/mm] bleibt die Entfernung der Trajektorie zum Fixpunkt in der Mitte stabil, d.h. die Lösung läuft weder nach außen noch nach innen. Was Du erhälst ist ein sogenannter periodischer Orbit. Auch in diesem Fall reguliert [mm] $\beta$ [/mm] wieder die Richtung, in der dieser Orbit durchlaufen wird.
> Also Angenommen, die Matrix meines
> Differentialgleichungsystems hat die Eigenwerte [mm]1\pm[/mm] i.
> Welches Phasenbild ist dann zu zeichnen?
In diesem Fall ist [mm] $\alpha=1>0$ [/mm] und [mm] $\beta=1>0$. [/mm] D.h. die Lösungstrajektorie läuft im Uhrzeigersinn (da [mm] $\beta>0$) [/mm] um den Fixpunkt in der Mitte nach außen hin weg (da [mm] $\alpha>0$).
[/mm]
>
> Das für
> a) a>0 und b>0
> oder
> b) a>0 und b<0
> ??
a) In diesem Fall ist [mm] $\alpha>0$ [/mm] und [mm] $\beta>0$. [/mm] D.h. die Lösungstrajektorie läuft im Uhrzeigersinn (da [mm] $\beta>0$) [/mm] um den Fixpunkt in der Mitte nach außen hin weg (da [mm] $\alpha>0$).
[/mm]
b) In diesem Fall ist [mm] $\alpha>0$ [/mm] und [mm] $\beta<0$. [/mm] D.h. die Lösungstrajektorie läuft entgegengesetzt des Uhrzeigersinns (da [mm] $\beta<0$) [/mm] um den Fixpunkt in der Mitte nach außen hin weg (da [mm] $\alpha>0$).
[/mm]
> Viele Grüße,
> Rutzel
Gruß Denny
|
|
|
|