www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Picard-Iteration
Picard-Iteration < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard-Iteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Do 01.05.2008
Autor: stimo59

Aufgabe
Bestimmen Sie die Picard-Iterierten v0, v1, v2 für die folgenden Anfangswertaufgaben:

a) u' = [mm] \bruch{1}{2}u^2, [/mm] u(0) = 2

b) u' = [mm] \pmat{ 0 & t^2 \\ 1 & 0 }, [/mm] u(0) = [mm] \pmat{ 1 \\ 1 } [/mm]

Hallo, ich bräuchte mal wieder etwas Feedback zu meiner Lösung.
Also bei a) habe ich:

v0 = 2

v1 = 2 + [mm] \integral_{}^{}{2 dt} [/mm] = 2+2t
v2 = 2 + [mm] \integral_{}^{}{\bruch{1}{2}(2+2t)^2 dt} [/mm] = 2 + 2t + [mm] 2t^2 [/mm] + [mm] \bruch{1}{3}t^3 [/mm]

Ist das soweit korrekt?

Bei b) bin ich mir nicht ganz sicher, wie ich mit den Vektoren umgehen soll.
So habe ich angefangen:

u' = [mm] \pmat{ 0 & t^2 \\ 1 & 0 } [/mm] * [mm] \pmat{ u1 \\ u2 } [/mm]  = [mm] \pmat{ t^2u2 \\ u1 } [/mm]

v0 = [mm] \pmat{ 1 \\ 1 } [/mm]

v1 = [mm] \pmat{ t^2u2 \\ u1 } [/mm] + [mm] \integral_{}^{}{\pmat{ t^2 \\ 1 } dt} [/mm]

Jetzt habe ich komponentenweise integriert und komme auf

v1 = [mm] \pmat{ \bruch{1}{3}t^3 +1 \\ t+1 } [/mm]

Vielen Dank schonmal im Vorraus!

Gruß, Timo



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Picard-Iteration: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 Do 01.05.2008
Autor: MathePower

Hallo stimo59,

> Bestimmen Sie die Picard-Iterierten v0, v1, v2 für die
> folgenden Anfangswertaufgaben:
>  
> a) u' = [mm]\bruch{1}{2}u^2,[/mm] u(0) = 2
>  
> b) u' = [mm]\pmat{ 0 & t^2 \\ 1 & 0 },[/mm] u(0) = [mm]\pmat{ 1 \\ 1 }[/mm]
>  
> Hallo, ich bräuchte mal wieder etwas Feedback zu meiner
> Lösung.
>  Also bei a) habe ich:
>  
> v0 = 2
>  
> v1 = 2 + [mm]\integral_{}^{}{2 dt}[/mm] = 2+2t
>  v2 = 2 + [mm]\integral_{}^{}{\bruch{1}{2}(2+2t)^2 dt}[/mm] = 2 + 2t
> + [mm]2t^2[/mm] + [mm]\bruch{1}{3}t^3[/mm]
>  
> Ist das soweit korrekt?

Ja. [ok]

Lautet das Verfahren nicht so:

[mm]v_{k+1}\left(t\right)=v_{0}+\integral_{0}^{t}{v_{k}\left(s\right) ds}[/mm]

>  
> Bei b) bin ich mir nicht ganz sicher, wie ich mit den
> Vektoren umgehen soll.
>  So habe ich angefangen:
>  
> u' = [mm]\pmat{ 0 & t^2 \\ 1 & 0 }[/mm] * [mm]\pmat{ u1 \\ u2 }[/mm]  =
> [mm]\pmat{ t^2u2 \\ u1 }[/mm]
>  
> v0 = [mm]\pmat{ 1 \\ 1 }[/mm]
>  
> v1 = [mm]\pmat{ t^2u2 \\ u1 }[/mm] + [mm]\integral_{}^{}{\pmat{ t^2 \\ 1 } dt}[/mm]
>  
> Jetzt habe ich komponentenweise integriert und komme auf
>  
> v1 = [mm]\pmat{ \bruch{1}{3}t^3 +1 \\ t+1 }[/mm]

Ok. Da gilt analoges wie oben.

>  
> Vielen Dank schonmal im Vorraus!
>  
> Gruß, Timo
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
MathePower

Bezug
                
Bezug
Picard-Iteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:57 Do 01.05.2008
Autor: stimo59

Danke für die Antwort

> Ok. Da gilt analoges wie oben.

Verstehe ich dass richtig, dass die Lösung stimmt?

Gruß, Timo

Bezug
                        
Bezug
Picard-Iteration: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Fr 02.05.2008
Autor: MathePower

Hallo stimo59,

> Danke für die Antwort
>  
> > Ok. Da gilt analoges wie oben.
> Verstehe ich dass richtig, dass die Lösung stimmt?

Ja. das verstehst Du richtig.

>  
> Gruß, Timo

Gruß
MathePower

Bezug
                
Bezug
Picard-Iteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Do 24.09.2009
Autor: a_la_fin

v2 = 2 + [mm]\integral_{}^{}{\bruch{1}{2}(2+2t)^2 dt}[/mm] = 2 +
> 2t
> > + [mm]2t^2[/mm] + [mm]\bruch{1}{3}t^3[/mm]
>  >  
> > Ist das soweit korrekt?
>  
> Ja. [ok]
>  

Hallo, habe die Aufgabe auch gerechnet. Müsste es nicht heißen: [mm] v_2= [/mm] 2 + 2*t + [mm] 2*t^2 [/mm] + [mm] \bruch{2}{3}t^3?? [/mm]
Denn wenn man die 2+2t aus multipliziert, hat man doch 4 + 8t + [mm] 4t^2 [/mm] und das durch 2 halt 2 + 4t + [mm] 2t^2.Die [/mm] Stammfunktion vom letzten Glied ist doch dann [mm] \bruch{2}{3}t^3 [/mm] oder nicht? Sorry, falls ich mich jetzt hier total verrechnet hab...

liebe Grüße

Bezug
                        
Bezug
Picard-Iteration: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Do 24.09.2009
Autor: MathePower

Hallo a_la_fin,


> v2 = 2 + [mm]\integral_{}^{}{\bruch{1}{2}(2+2t)^2 dt}[/mm] = 2 +
> > 2t
> > > + [mm]2t^2[/mm] + [mm]\bruch{1}{3}t^3[/mm]
>  >  >  
> > > Ist das soweit korrekt?
>  >  
> > Ja. [ok]
>  >  
> Hallo, habe die Aufgabe auch gerechnet. Müsste es nicht
> heißen: [mm]v_2=[/mm] 2 + 2*t + [mm]2*t^2[/mm] + [mm]\bruch{2}{3}t^3??[/mm]
>  Denn wenn man die 2+2t aus multipliziert, hat man doch 4 +
> 8t + [mm]4t^2[/mm] und das durch 2 halt 2 + 4t + [mm]2t^2.Die[/mm]
> Stammfunktion vom letzten Glied ist doch dann
> [mm]\bruch{2}{3}t^3[/mm] oder nicht? Sorry, falls ich mich jetzt
> hier total verrechnet hab...


Natürlich hast Du Recht.


>  
> liebe Grüße


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de