www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Picard-Iteration
Picard-Iteration < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard-Iteration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:13 Di 27.11.2012
Autor: Hellfrog

Aufgabe
Lösen sie auf [0, [mm] \infty) [/mm] das Anfangsproblem

y' = ty,    y(0) = 1

mit Hilfe der Picard-Iteration.

hallo

ich habe hier ein problem bei dieser aufgabe. die einzelnen iterationen sind kein problem, nur das bildungsgesetz zu erraten fällt mir schwer.

[]Hier wurde zu derselben aufgabe schonmal 3 iterationen gerechnet und ich habe noch 2 weitere berechnet aber das hat mir nicht wirklich geholfen.

[mm] y_{4}(t) [/mm] = 1 + [mm] \bruch{t^{2}}{2} [/mm] + [mm] \bruch{t^{4}}{8} [/mm] + [mm] \bruch{t^{6}}{48} [/mm] + [mm] \bruch{t^{8}}{384} [/mm]

[mm] y_{5}(t) [/mm] = 1 + [mm] \bruch{t^{2}}{2} [/mm] + [mm] \bruch{t^{4}}{8} [/mm] + [mm] \bruch{t^{6}}{48} [/mm] + [mm] \bruch{t^{8}}{384} [/mm] + [mm] \bruch{t^{10}}{3840} [/mm]


habe schonmal versucht [mm] \bruch{1}{(n-1)!}, \bruch{1}{n!} [/mm] und [mm] \bruch{1}{2^{n}} [/mm] auszuklammern, aber hat alles nix gebracht.
in nem anderen post wurde zu [mm] y_{4}(t) [/mm] geraten, eine bekannte taylor formel zu benutzen.


danke schonmal im voraus

        
Bezug
Picard-Iteration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:26 Di 27.11.2012
Autor: MathePower

Hallo Hellfrog,

> Lösen sie auf [0, [mm]\infty)[/mm] das Anfangsproblem
>  
> y' = ty,    y(0) = 1
>  
> mit Hilfe der Picard-Iteration.
>  hallo
>  
> ich habe hier ein problem bei dieser aufgabe. die einzelnen
> iterationen sind kein problem, nur das bildungsgesetz zu
> erraten fällt mir schwer.
>  
> []Hier
> wurde zu derselben aufgabe schonmal 3 iterationen gerechnet
> und ich habe noch 2 weitere berechnet aber das hat mir
> nicht wirklich geholfen.
>  
> [mm]y_{4}(t)[/mm] = 1 + [mm]\bruch{t^{2}}{2}[/mm] + [mm]\bruch{t^{4}}{8}[/mm] +
> [mm]\bruch{t^{6}}{48}[/mm] + [mm]\bruch{t^{8}}{384}[/mm]
>  
> [mm]y_{5}(t)[/mm] = 1 + [mm]\bruch{t^{2}}{2}[/mm] + [mm]\bruch{t^{4}}{8}[/mm] +
> [mm]\bruch{t^{6}}{48}[/mm] + [mm]\bruch{t^{8}}{384}[/mm] +
> [mm]\bruch{t^{10}}{3840}[/mm]
>  
>
> habe schonmal versucht [mm]\bruch{1}{(n-1)!}, \bruch{1}{n!}[/mm] und
> [mm]\bruch{1}{2^{n}}[/mm] auszuklammern, aber hat alles nix
> gebracht.
>  in nem anderen post wurde zu [mm]y_{4}(t)[/mm] geraten, eine
> bekannte taylor formel zu benutzen.
>


Stelle z.B, 2. Summanden durch den 1. Summanden dar.

Ist der 1. Summand [mm]a_{0}[/mm], dann ist

[mm]a_{1}=c_{1}*a_{0}[/mm]

Das Spiel machst Du auch mit dem 2. Summanden usw.:

[mm]a_{2}=c_{2}*a_{1}[/mm]

Dann wirst Du ein Bildungsgesetz erkennen.


>
> danke schonmal im voraus


Gruss
MathePower

Bezug
        
Bezug
Picard-Iteration: Antwort
Status: (Antwort) fertig Status 
Datum: 07:11 Mi 28.11.2012
Autor: fred97

Du kannst auch klammheimlich, auf einem Schmierzettel, das AWP

   y' = ty,    y(0) = 1


lösen. Das ist hier sehr einfach: [mm] y(t)=e^{\bruch{1}{2}t^2} [/mm]

Schreib das als Reihe und Du hast Dein Bildungsgesetz für die Iterationen.

Da Du das heimlich gemacht hast, solltest Du das Bildungsgesetz noch induktiv beweisen.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de