www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Picard-Lindelöf global
Picard-Lindelöf global < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Picard-Lindelöf global: Erklärung / Tipp
Status: (Frage) beantwortet Status 
Datum: 17:57 Mi 19.01.2011
Autor: carlosfritz

Aufgabe
Sei f: [mm] \IR \times \IR^{n} \to \IR^{n} [/mm] ein zeitabhg. Vektorfeld, sodass ein [mm] L\in \IR [/mm] existiert mit:

||f(t,x)-f(t,y)|| [mm] \le [/mm] L||x-y|| für alle y,x [mm] \in \IR^{n}; [/mm] t [mm] \in \IR. [/mm]

Zeige, dass es für jedes [mm] y_{0} \in \IR^{n} [/mm] eine stetig diff.bare Funktion Y: [mm] \IR \to \IR^{n} [/mm] gibt mit:
[mm] Y(0)=y_{0} [/mm] und Y'(t)=f(t,Y(t)) für alle t [mm] \in \IR [/mm]

Hallo,
In der VL hatten wir einen Satz (Picard-Lindelöf) der ähnliches sagt.

Nach Recherche  im Netz fand ich das []hier.

Jedoch brauche ich im Link für die Zeit ein kompaktes Intervall. Das kommt ja mit [mm] \IR [/mm] nicht hin. Kann ich also überhaupt den Beweis so wie im Link führen?


Zweite Frage:

Soweit ist im Beweis alles nachvollziehbar, bis auf den Anfang. Speziell verstehe ich nicht, warum ||F(t,u(t))|| [mm] \le [/mm] M ist, für ein geeignetes M. Würde ich dies verstehen, ist die Stetigkeit auch kein Problem mehr.

Kann mir das jemand erklären, oder mir den entschiedenen Hinweis geben? Ich sehe es einfach nicht.

        
Bezug
Picard-Lindelöf global: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Do 20.01.2011
Autor: fred97


> Sei f: [mm]\IR \times \IR^{n} \to \IR^{n}[/mm] ein zeitabhg.
> Vektorfeld, sodass ein [mm]L\in \IR[/mm] existiert mit:
>  
> ||f(t,x)-f(t,y)|| [mm]\le[/mm] L||x-y|| für alle y,x [mm]\in \IR^{n};[/mm] t
> [mm]\in \IR.[/mm]
>  
> Zeige, dass es für jedes [mm]y_{0} \in \IR^{n}[/mm] eine stetig
> diff.bare Funktion Y: [mm]\IR \to \IR^{n}[/mm] gibt mit:
>  [mm]Y(0)=y_{0}[/mm] und Y'(t)=f(t,Y(t)) für alle t [mm]\in \IR[/mm]
>  Hallo,
> In der VL hatten wir einen Satz (Picard-Lindelöf) der
> ähnliches sagt.
>  
> Nach Recherche  im Netz fand ich das
> []hier.
>  
> Jedoch brauche ich im Link für die Zeit ein kompaktes
> Intervall. Das kommt ja mit [mm]\IR[/mm] nicht hin. Kann ich also
> überhaupt den Beweis so wie im Link führen?

Nein.

>  
>
> Zweite Frage:
>  
> Soweit ist im Beweis alles nachvollziehbar, bis auf den
> Anfang. Speziell verstehe ich nicht, warum ||F(t,u(t))||
> [mm]\le[/mm] M ist, für ein geeignetes M. Würde ich dies
> verstehen, ist die Stetigkeit auch kein Problem mehr.
>  
> Kann mir das jemand erklären, oder mir den entschiedenen
> Hinweis geben? Ich sehe es einfach nicht.


Im Link steht:

                  [mm] \|F(t,u(t))\| \leq [/mm] M auf [a,b]


Da F und u stetige Funktionen sind , ist auch F(t,u(t)) stetig. Und damit ist diese Funktion auf dem kompakten Intervall beschränkt.

(Satz aus der VL (den Ihr bestimmt hattet): "Stetige Funktionen auf kompakten Mengen sind beschränkt")

Zu Deiner Aufgabe:

Für n [mm] \in \IN [/mm] sei [mm] $I_n:=[-n,n]$ [/mm]

1. Nach der Version des Satzes von Picard-Lindelöf, die Ihr in der VL hattet , gilt:

Das AWP     $y'=f(t,y), ~~  [mm] y(0)=y_0$ [/mm]  hat auf [mm] I_n [/mm] genau eine Lösung [mm] y_n. [/mm]

2. So, nun betrachte das Intervall [mm] I_{n+1}. [/mm] Die auf [mm] I_{n+1} [/mm] eindeutig bestimmt Lösung [mm] y_{n+1} [/mm] des AWP, löst dieses AWP trivialerweise auch auf [mm] I_n. [/mm]

Daher gilt:  [mm] y_{n+1}=y_n [/mm] auf [mm] I_n [/mm]

3. Definiere nun die Funktion $y: [mm] \IR \to \IR^n$ [/mm]  durch

                          [mm] $y(x):=y_n(x)$ [/mm] , falls $x [mm] \in I_n$ [/mm]

Überzeuge Dich von:

     a)  y ist auf [mm] \IR [/mm] wohldefiniert.

     b)  y ist auf [mm] \IR [/mm] differenzierbar

     c)  y löst das AWP auf [mm] \IR. [/mm]


FRED

Bezug
                
Bezug
Picard-Lindelöf global: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:29 Do 20.01.2011
Autor: carlosfritz

Vielen Dank.

Das war mal (wieder) eine richtig gute Erklärung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de