www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Poisson Approx.
Poisson Approx. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poisson Approx.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 So 09.11.2008
Autor: Arvi-Aussm-Wald

Aufgabe
eine glühbirne ist nach der produktion zu 1.5% defekt (0.015). wieviele birnen müss man auswählen, um mit einer wahrscheinlichkeit von mehr als 0.8, sagen zu können das 100 birnen von den ausgewählten funktionieren.

so finde aufgabe sieht einfach aus, hat aber ihre tücken.

=> [mm] \vektor{n \\ 100}*(0.985)^{100}(0.015)^{n-100}\ge0.8 [/mm]

heisst ich wähle aus n birnen 100, wobei eine zu 98.5% funktioniert, sodass die 100 zu 80% funktionieren sollen.
da ich auch ohne zurücklegen ziehe, denke ich das die binomialerteilung der richtige ansatz ist.

liefert mir die poisson approx.:

[mm] e^{-0.985n}*\bruch{(0.985n)^(100)}{100!}\ge0.8 [/mm]

diesen therm kann man allerdings nicht analytisch lösen, daher denke ich das mein ansatz falsch sein könnte, oder?

        
Bezug
Poisson Approx.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 So 09.11.2008
Autor: luis52

Moin,

Da schau her.

vg Luis

Bezug
                
Bezug
Poisson Approx.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 So 09.11.2008
Autor: Arvi-Aussm-Wald

ich muss da nochmal nachhaken

ges [mm] P(X\ge100)\ge0.8=1-P(X<100)\ge0.8 [/mm]

[mm] 1-((P(x=1)+P(x=2)+...+P(X=99))\ge0.8 [/mm]

[mm] 1-(\vektor{n \\ 1}*(0.985)^{1}*(0.015)^{n-1}+\vektor{n \\ 2}*(0.985)^2...) [/mm]

[mm] 1-(e^{-0.985n}*(\bruch{(0.985n)^{1}}{1!}+\bruch{(0.985n)^{2}}{2!}+...+\bruch{(0.985n)^{99}}{99!}) [/mm]

[mm] 1-e^{-0.985n}*\summe_{n=1}^{99}\bruch{(0.985n)^{k}}{k!} [/mm]

und was mach ich jetzt?


Bezug
                        
Bezug
Poisson Approx.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:00 So 09.11.2008
Autor: luis52

Moin  Arvi-Aussm-Wald,

beachte, dass X binomialverteilt ist mit n und $p=0.985$. Gesucht ist
[mm] $n\ge100$ [/mm] mit



[mm] \begin{matrix} P(X\ge100) &=&P(X=100)+\dots+P(X=n) \\ &=&\dbinom{n}{100}0.985^{100}0.015^{n-100}+\dots+\dbinom{n}{100}0.985^{n}0.015^0 \\ &\approx&\dfrac{(0.985n)^{100}}{100!}+\dots+\dfrac{(0.985n)^{n}}{n!}\\ &\ge&0.8 \end{matrix} [/mm]



Stimmt, du hast Recht, das ist sehr unschoen. Man kann ein
Statistikprogramm heranziehen und findet $n=102$.
Du kannst aber auch die Approximation der Binomial- durch die
Normalverteilung benutzen:

[mm] $P(X\ge100)=1-P(X\le99)\approx1-\Phi\left(\dfrac{99+0.5-0.985n}{\sqrt{0.015\times0.985n}}\right)$ [/mm]


vg Luis

PS: Sorry, mein Hinweis oben war nicht sehr hilfreich.



Bezug
                                
Bezug
Poisson Approx.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 So 09.11.2008
Autor: Arvi-Aussm-Wald

super danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de