www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Polarkoordianten
Polarkoordianten < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordianten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Di 04.07.2006
Autor: hanesy

Aufgabe
Sei K die Kardioide [mm] r=1+cos(\varphi) [/mm] mit [mm] (0<=\varphi<= 2*\pi) [/mm] .
Berechne den Schwerpunkt K mit
[mm] K=((1/(m_2(K))* \integral_{K}^{}{(x) dm_2(x,y)},1/(m_2(K))* \integral_{K}^{}{(y) dm_2(x,y)}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo an alle,
ich habe zu der Aufgabe folgende Frage:
so wie ich das sehe ist der Schwerpunkt in kartesischen Koordinaten gegeben ud um die in der Definition von K genannten Integrale zu berechnen muss ich doch eine Gleichung der Kardioide im Kartesischen Koordinantensystem finden oder??? ich tue mich damit nämlich sehr schwer.
Kann ich denn [mm] m_2(K) [/mm] an Hand der Polarkoordinaten berechnen oder soll ich auch hier den Weg ins Kartesische suchen ???
Habe dammit insgesamt Probleme weil die Polarkoordiaten mir ja keine integrierbare Funktion oder ähnlich liefern.
Danke daher für jede Hilfe
Viele Grüße Hannes

        
Bezug
Polarkoordianten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Di 04.07.2006
Autor: MatthiasKr

Hallo Hannes,

> Sei K die Kardioide [mm]r=1+cos(\varphi)[/mm] mit [mm](0<=\varphi<= 2*\pi)[/mm]
> .
>  Berechne den Schwerpunkt K mit
> [mm]K=((1/(m_2(K))* \integral_{K}^{}{(x) dm_2(x,y)},1/(m_2(K))* \integral_{K}^{}{(y) dm_2(x,y)})[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> Hallo an alle,
>  ich habe zu der Aufgabe folgende Frage:
>  so wie ich das sehe ist der Schwerpunkt in kartesischen
> Koordinaten gegeben ud um die in der Definition von K
> genannten Integrale zu berechnen muss ich doch eine
> Gleichung der Kardioide im Kartesischen Koordinantensystem
> finden oder???

eigentlich nicht, nein.

ich tue mich damit nämlich sehr schwer.

>  Kann ich denn [mm]m_2(K)[/mm] an Hand der Polarkoordinaten
> berechnen oder soll ich auch hier den Weg ins Kartesische
> suchen ???

mache dir erstmal klar wie diese kurve aussieht (internet hilft!). du sollst die von der kurve eingeschlossene fläche berechnen, was ja das integral der 1-funktion über die fläche ist.

allerdings bietet es sich natürlich an, hier in polarkoordinaten zu rechnen. überlege dir hierzu, wie [mm] \varphi [/mm] und r laufen müssen um die fläche zu charakterisieren. außerdem darfst du nicht vergessen das Polar-Volumenelement zu verwenden [mm] ($dV=r\;dr\;d\varphi$). [/mm]

Hast du einmal dieses prinzip verstanden, kannst du auch leicht die weiteren integrale (mit integranden x bzw. y) bestimmen.

Gruß
Matthias




> Habe dammit insgesamt Probleme weil die Polarkoordiaten mir
> ja keine integrierbare Funktion oder ähnlich liefern.
>  Danke daher für jede Hilfe
>  Viele Grüße Hannes

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de