www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Polarkoordinaten
Polarkoordinaten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:33 Mi 19.05.2004
Autor: mario

Hallo ich habe ein problem mit folgender Funktion in Polarkoordinaten
die Aufgabenstellung lautet: Ermitteln sie den Flächeninhalt der zwischen der Kurve und der Polgeraden gebildeten Fläche
Als Hinweis wird gegeben man sollte die Standartsubstitution für trigonometrische Funktionen verwenden

[mm] r=r(\varphi)=\bruch{1}{\wurzel{cos \varphi+2}} \qquad \varphi \in [0,pi] [/mm]

Ich weiß das die Standartsubstitution lautet x=2arctan t
allerdings hilft mir das noch nicht viel weiter

Ich finde keinen Anfang darum kann ich auch noch keine Fortschritte geben.
Ich wäre euch dankbar wenn ihr mir ein paar denkanstöße geben könntet.


        
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:45 Mi 19.05.2004
Autor: Stefan

Hallo Mario,

wahrscheinlich blamiere ich mich jetzt bis auf die Knochen, aber was versteht man bei dieser Aufgabe unter "Polgerade"?

Ich durchschaue das gerade nicht. :-(

Um welches Integral handelt es sich, d.h. wo sind genau die Grenzen?

Liebe Grüße
Stefan

Bezug
        
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 Mi 19.05.2004
Autor: phymastudi

Hallo,

ist mit der Polgeraden nicht einfach die Polarachse, also die x-Achse gemeint, von der aus Phi gemessen wird?!

Bezug
                
Bezug
Polarkoordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Mi 19.05.2004
Autor: Stefan

Hallo Björn,

ja, das mag sein, ich kenne diese Ausdrücke nicht. Aber es macht in jedem Fall Sinn. Danke!

Liebe Grüße
Stefan

Bezug
        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:25 Do 20.05.2004
Autor: Paulus

Hallo mario

ich glaube, folgende Substitution ist gemeint:

[mm]r = \wurzel{x^2+y^2}[/mm]

und

[mm]\cos{\varphi} = \bruch{x}{\wurzel{x^2+y^2}}[/mm]

und (hier allerdings belanglos)

[mm]\sin{\varphi} = \bruch{y}{\wurzel{x^2+y^2}}[/mm]

Nach dem Substituieren solltest du [mm]y(x)[/mm] bestimmen können, wobei du allerdings tiersch auf die korrekten Vorzeichen aufpassen musst.

Tip dazu: Für [mm]\varphi = 0[/mm] kannst du den zugehörigen Wert für [mm]r[/mm] berechnen; und [mm]\varphi = 0[/mm] bedeutet auch, dass dort gilt: [mm]y = 0[/mm])

Liebe Grüsse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de