www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Polarkoordinaten
Polarkoordinaten < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordinaten: Frage
Status: (Frage) beantwortet Status 
Datum: 18:13 Sa 02.07.2005
Autor: Gero

Hallo nochmal,
da man ja immer nur eine Aufgabe pro Beitrag schreiben soll, kommt mein hier mein zweites Problem:"Berechnen Sie mit Polarkoordinaten
[mm] \integral_{\IR^2}^{} {e^{-|x|^{2}} dx}= \pi [/mm]
und zeigen Sie mit dem Satz von Fubini
[mm] \integral_{\IR^2}^{} {e^{-t^{2}} dt}= \wurzel{\pi}" [/mm]
Hat mir jemand ne Idee?

Danke schonmal im voraus!

Gero

        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Sa 02.07.2005
Autor: Paulus

Hallo

ich versuche mal eine Teillösung, zur ersten Teilaufgabe. Vielleicht kann ja jemand mit genügend Rechten die Aufgabe als "teilweise beantwortet" markieren.

>  Berechnen Sie mit Polarkoordinaten
>   [mm]\integral_{\IR^2}^{} {e^{-|x|^{2}} dx}= \pi[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Du weisst ja, dass die Funktion beim Übergang zu Polarkoordinaten mit $r_$ multipliziert werden muss. Dies ergibt für dein Integral diese einfache Rechnung:

$\integral_0^{\infty} \integral_0^{2\pi} r*{e^{-r^{2}}\, d\varphi\, dr=$
$2\pi*\integral_0^{\infty} r*{e^{-r^{2}}\, dr=\pi$

Eine Stammfunktion von $r*{e^{-r^{2}}}$ ist ja $-\bruch{1}{2}e^{-r^2}$

Viele Grüsse

Paul

Bezug
        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:02 So 03.07.2005
Autor: Stefan

Hallo!

Paul hat die Aufgabe ja schon gelöst. :-) Der zweite Teil folgt ja jetzt sofort aus dem Satz von Fubini, nach dem gilt:

[mm] $\left(\int\limits_{\IR} e^{-t^2}\, dt\right)^2 [/mm] = [mm] \int\limits_{\IR} e^{-t_1^2}\, dt_1 \cdot \int\limits_{\IR} e^{-t_2^2}\, dt_2 [/mm] = [mm] \int\limits_{\IR} \int\limits_{\IR} e^{-t_1^2 -t_2^2}\, dt_1dt_2 \stackrel{\mbox{\scriptsize Fubini}}{=} \int\limits_{\IR^2} e^{-\Vert x\Vert^2} \, [/mm] dx = [mm] \pi$, [/mm]

woraus die Behauptung durch Wurzelziehen folgt.

Viele Grüße
Stefan

Bezug
                
Bezug
Polarkoordinaten: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 So 03.07.2005
Autor: Gero

Danke für eure Antworten!

Gruß   Gero

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de