www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Polarkoordinaten
Polarkoordinaten < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polarkoordinaten: integrieren
Status: (Frage) beantwortet Status 
Datum: 21:12 Mo 27.08.2012
Autor: Kevin22

Aufgabe
Hallo leute ich bin leider in Mathe wieder auf probleme gestossen und wollte euch fragen ob ich auf dem richtigen Dampfer bin.

G = (x ,y , z) Element [mm] R^3 [/mm] : x,y,z >=0, 1/4 <= [mm] x^2 +y^2 +z^2 [/mm] <= 1

Berechnen sie

[mm] \integral_{}^{}\integral_{}^{}\integral_{}^{} \wurzel{x^2 +y^2 +z^2} [/mm] d(x,y,z)


Mein ansatz habs in polarkoordinaten versucht:

[mm] \integral_{1/2}^{1}\integral_{0}^{pi/2}\integral_{0}^{pi/2}r*(-r^2*cosphi [/mm] ) dphi dteta dr

Ist der ansatz richtig?


Ich habe die frage in keinem forum gestellt.

        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 Mo 27.08.2012
Autor: MathePower

Hallo Kevin22,

> Hallo leute ich bin leider in Mathe wieder auf probleme
> gestossen und wollte euch fragen ob ich auf dem richtigen
> Dampfer bin.
>  
> G = (x ,y , z) Element [mm]R^3[/mm] : x,y,z >=0, 1/4 <= [mm]x^2 +y^2 +z^2[/mm]
> <= 1
>  
> Berechnen sie
>
> [mm]\integral_{}^{}\integral_{}^{}\integral_{}^{} \wurzel{x^2 +y^2 +z^2}[/mm]
> d(x,y,z)
>  
>
> Mein ansatz habs in polarkoordinaten versucht:
>  
> [mm]\integral_{1/2}^{1}\integral_{0}^{pi/2}\integral_{0}^{pi/2}r*(-r^2*cosphi[/mm]
> ) dphi dteta dr
>  
> Ist der ansatz richtig?
>  


Das ist nur richtig, wenn Du die Parametertransformation

[mm]x=r*\cos\left(\phi\right)*\cos\left(\theta\right)[/mm]

[mm]y=r*\cos\left(\phi\right)*\sin\left(\theta\right)[/mm]

[mm]z=r*\sin\left(\phi\right)[/mm]

gewählt hast.


> Ich habe die frage in keinem forum gestellt.



Gruss
MathePower

Bezug
                
Bezug
Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Mo 27.08.2012
Autor: Kevin22


> Hallo Kevin22,
>  
> > Hallo leute ich bin leider in Mathe wieder auf probleme
> > gestossen und wollte euch fragen ob ich auf dem richtigen
> > Dampfer bin.
>  >  
> > G = (x ,y , z) Element [mm]R^3[/mm] : x,y,z >=0, 1/4 <= [mm]x^2 +y^2 +z^2[/mm]
> > <= 1
>  >  
> > Berechnen sie
> >
> > [mm]\integral_{}^{}\integral_{}^{}\integral_{}^{} \wurzel{x^2 +y^2 +z^2}[/mm]
> > d(x,y,z)
>  >  
> >
> > Mein ansatz habs in polarkoordinaten versucht:
>  >  
> >
> [mm]\integral_{1/2}^{1}\integral_{0}^{pi/2}\integral_{0}^{pi/2}r*(-r^2*cosphi[/mm]
> > ) dphi dteta dr
>  >  
> > Ist der ansatz richtig?
>  >  
>
>
> Das ist nur richtig, wenn Du die Parametertransformation
>  
> [mm]x=r*\cos\left(\phi\right)*\cos\left(\theta\right)[/mm]
>  
> [mm]y=r*\cos\left(\phi\right)*\sin\left(\theta\right)[/mm]
>  
> [mm]z=r*\sin\left(\phi\right)[/mm]
>  
> gewählt hast.
>  
>
> > Ich habe die frage in keinem forum gestellt.
>
>
>
> Gruss
>  MathePower

Ich poste mal meine komplette rechnung als foto .

Ist mein ergebnis richtig?
Könnt ihr mir bitte sagen falls ein fehler vorliegt?


Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Mo 27.08.2012
Autor: schachuzipus

Hallo,

bitte eintippen, so kann man nix dranschreiben.

Da ich dir die Tipparbeit nicht abnehmen will, nur folgendes:

Bis zum letzten "=" stimmt es, dann hast du aber das Integral falsch ausgewertet ...

Gruß

schachuzipus


Bezug
                                
Bezug
Polarkoordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:52 Mo 27.08.2012
Autor: Kevin22


> Hallo,
>  
> bitte eintippen, so kann man nix dranschreiben.
>  
> Da ich dir die Tipparbeit nicht abnehmen will, nur
> folgendes:
>  
> Bis zum letzten "=" stimmt es, dann hast du aber das
> Integral falsch ausgewertet ...
>  
> Gruß
>  
> schachuzipus


Ok ich tipp mal das letzte Integral integriert:

- [mm] \bruch{1}{4}*r^4 *\bruch{pi}{2} [/mm] Jetzt grenzen [mm] \bruch{1}{2} [/mm] bis 1 eingesetzt:

[ [mm] -\bruch{1}{4} [/mm] * [mm] \bruch{pi}{2} [/mm] ] - [ - [mm] \bruch{1}{4}*\bruch{1}{16}* \bruch{pi}{2} [/mm] ]


Was habe ich falsch gemacht?
  

Bezug
                                        
Bezug
Polarkoordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 27.08.2012
Autor: reverend

Hallo Kevin,

> > Bis zum letzten "=" stimmt es, dann hast du aber das
> > Integral falsch ausgewertet ...
>
> Ok ich tipp mal das letzte Integral integriert:
>  
> - [mm]\bruch{1}{4}*r^4 *\bruch{pi}{2}[/mm] Jetzt grenzen
> [mm]\bruch{1}{2}[/mm] bis 1 eingesetzt:
>  
> [ [mm]-\bruch{1}{4}[/mm] * [mm]\bruch{pi}{2}[/mm] ] - [ - [mm]\bruch{1}{4}*\bruch{1}{16}* \bruch{pi}{2}[/mm] ]
>  
> Was habe ich falsch gemacht?

Noch nichts. In Deinem Scan geht es dann nur falsch weiter. Vor dem ersten Term nach dem letzten Gleichheitszeichen fehlt nur ein Minus.

Das Ergebnis lautet also: [mm] \blue{-\bruch{\pi}{8}}+\bruch{\pi}{128}=\bruch{15}{128}\pi [/mm]

Wenn Du übrigens noch vor dem "pi" einen Backslash \ schreibst, dann wird es auch richtig angezeigt.
\pi ergibt [mm] $\pi$. [/mm]

Grüße
reverend

PS: Noch hübscher wären übrigens Kugelkoordinaten gewesen. Der zu integrierende Bereich schreit ja geradezu danach.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de