www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Polstellen, Asymptote ablesen
Polstellen, Asymptote ablesen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstellen, Asymptote ablesen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Sa 12.05.2012
Autor: Apfelchips

Aufgabe
a) Warum gehört der Definitionsbereich nicht zu dem unten abgebildeten Funktionsgraphen?
Korrigieren Sie den Definitionsbereich. D = {0} !

Geben Sie an
b) die Asymptote.
c) die Symmetrieeigenschaften
d) das Verhalten an den Polstellen.

Gegeben ist folgender Graph (meine Skizze; ich hoffe das reicht):
[Dateianhang nicht öffentlich]






Das Errechnen der gesuchten Werte mittels eines gegebenen Funktionsterms würde ich hinbekommen — aber die gesuchten Werte von einem Graphen abzulesen, das fällt mir dann doch ziemlich schwer.

Für a) würde ich sagen, dass der Definitionsbereich weit umfassender sein müsste — in der Regel sollte er alle reellen Zahlen außer die Polstellen erhalten. Allerdings scheitert es dann bei mir am Ermitteln der Polstellen. Wie muss ich hier vorgehen, um diese abzulesen?

Auch bei b) und d) stehe ich vor entsprechenden Schwierigkeiten.

Aufgabenteil c) hingegen ist für mich recht simpel: Die gebrochen-rationale Funktion ist symmetrisch zur y-Achse.

Ich hoffe, Ihr könnt mir hier ein paar Denkanstöße und Tipps mit auf dem Weg geben.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Polstellen, Asymptote ablesen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:42 Sa 12.05.2012
Autor: Valerie20

Hi!

> a) Warum gehört der Definitionsbereich nicht zu dem unten
> abgebildeten Funktionsgraphen?
>  Korrigieren Sie den Definitionsbereich. D = {0} !
>  
> Geben Sie an
>  b) die Asymptote.
>  c) die Symmetrieeigenschaften
>  d) das Verhalten an den Polstellen.
>  
> Gegeben ist folgender Graph (meine Skizze; ich hoffe das
> reicht):
>  [Dateianhang nicht öffentlich]
>  
>
>
>
>
> Das Errechnen der gesuchten Werte mittels eines gegebenen
> Funktionsterms würde ich hinbekommen — aber die
> gesuchten Werte von einem Graphen abzulesen, das fällt mir
> dann doch ziemlich schwer.


> Für a) würde ich sagen, dass der Definitionsbereich weit
> umfassender sein müsste — in der Regel sollte er alle
> reellen Zahlen außer die Polstellen erhalten.

Das stimmt.

> Allerdings
> scheitert es dann bei mir am Ermitteln der Polstellen. Wie
> muss ich hier vorgehen, um diese abzulesen?

Die senkrechten Asymptoten in deinem Graphen sind deine Polstellen.
Für d) bestimmst du die Grenzwerte (lim) an den entsprechenden Stellen.

> Auch bei b) und d) stehe ich vor entsprechenden
> Schwierigkeiten.

Bestimme einfach die waagerechten und sekrechten Asymptoten.
Für

> Aufgabenteil c) hingegen ist für mich recht simpel: Die
> gebrochen-rationale Funktion ist symmetrisch zur y-Achse.
>  
> Ich hoffe, Ihr könnt mir hier ein paar Denkanstöße und
> Tipps mit auf dem Weg geben.


Bezug
                
Bezug
Polstellen, Asymptote ablesen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Sa 12.05.2012
Autor: Apfelchips


Hallo; danke für Deine Hilfe!

> Die senkrechten Asymptoten in deinem Graphen sind deine
> Polstellen.

Leider steh ich immer noch auf'm Schlauch: Ist die y-Achse die Asymptote? Kann ich hier einen exakten Wert bestimmen? Rechnerisch könnte ich einfach auf den Grad des Zähler- und Nennerterms achten und daraus schließen, ob es sich um eine Parallele zur x-Achse, um die x-Achse selbst oder um eine schiefe Asymptote handelt und die Asymptoten dann entsprechend bestimmen.

Aber grafisch … an welcher Stelle kann ich denn die Asymptoten im Graphen sehen?

Bezug
                        
Bezug
Polstellen, Asymptote ablesen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:31 Sa 12.05.2012
Autor: chrisno

Von links kommend fällt der Funktionsgraph. Er fällt immer steiler so das er nie zu x = - 3,5 Kästchen kommt. Da plötzlich kommt er von oben wieder runter. Für x = -3,5 gibt es keinen Wert, weil da die Funktion von [mm] $-\infty$ [/mm] nach [mm] $+\infty$ [/mm] umspringt (sehr salopp gesagt). Das ist die eine Polstelle. Da könntest Du eine Senkrechte auf der x-Achse errichten, also eine parallele zur y-Achse. Der kommt die Funktion beliebig nahe, aber erreicht sie nicht. Also ein Asymptote. Die hat aber keine Darstellung in der Form y=mx+b.
Entprechendes gilt für die andere Polstelle bei x = 3 Kästchen.

Bezug
                                
Bezug
Polstellen, Asymptote ablesen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 14.05.2012
Autor: Apfelchips



> Für x = -3,5 gibt es keinen Wert, weil da die Funktion von [mm]-\infty[/mm]
> nach [mm]+\infty[/mm] umspringt (sehr salopp gesagt). Das ist die
> eine Polstelle.

Danke für Deine Erklärung!

Alles klar, ich verstehe. Ich hatte bisher überhaupt keine große Vorstellung davon, wie so eine gebrochen-rationale gezeichnet aussieht. In der Schule wurde das detailliert nur von der rechnerischen Seite aus betrachtet.

Jetzt versteh' ich's aber besser: Dort, wo der Funktionsgraph "unterbrochen" wird, ist die Polstelle.

Da es sich um eine y-achsensymmetrische Funktion handelt, müssten die Polstellen bei ca. x = -3,5 Kästchen und ca. x = + 3,5 Kästchen — also jeweils gespiegelt — liegen, richtig?

Bezug
                                        
Bezug
Polstellen, Asymptote ablesen: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 14.05.2012
Autor: Loddar

Hallo Apfelchips!


> Jetzt versteh' ich's aber besser: Dort, wo der
> Funktionsgraph "unterbrochen" wird, ist die Polstelle.

[daumenhoch]


> Da es sich um eine y-achsensymmetrische Funktion handelt,
> müssten die Polstellen bei ca. x = -3,5 Kästchen und ca.
> x = + 3,5 Kästchen — also jeweils gespiegelt — liegen, richtig?

Soweit man dies aus obiger Skizze so "erkennen" mag ;-) ... [daumenhoch] !


Gruß
Loddar


Bezug
                                                
Bezug
Polstellen, Asymptote ablesen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:14 Mo 14.05.2012
Autor: Apfelchips

Meine Skizze ist nicht die Beste — sie soll aber eine y-achsensymmetrische Funktion darstellen. ;-)

Danke für die Bestätigung!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de