www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Polstellen und Asymptoten
Polstellen und Asymptoten < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polstellen und Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Mo 03.02.2014
Autor: Idefix_2013

Hallo zusammen,

ich habe eine allgemeine Frage zum Thema Polstelle!

Z.B.: Hat die Funktion [mm] f(x)=\bruch{1}{x^2} [/mm] in [mm] x_{0}=0 [/mm] eine Polstelle?
Ich hab mal irgendwo gehört, dass für eine Polstelle die Grenzwerte für [mm] x\to0+ [/mm] und [mm] x\to0- [/mm] unterschiedlich sein müssen, stimmt das?

Und hat die Funktion [mm] g(x)=(x-2)*e^x [/mm] eine waagrechte Asymptote?

Vielen Dank für die Hilfe!

        
Bezug
Polstellen und Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Mo 03.02.2014
Autor: Richie1401

Hi,

> Hallo zusammen,
>  
> ich habe eine allgemeine Frage zum Thema Polstelle!
>  
> Z.B.: Hat die Funktion [mm]f(x)=\bruch{1}{x^2}[/mm] in [mm]x_{0}=0[/mm] eine
> Polstelle?

Ja, hat sie, und zwar ein Pol zweiter Ordnung.

>  Ich hab mal irgendwo gehört, dass für eine Polstelle die
> Grenzwerte für [mm]x\to0+[/mm] und [mm]x\to0-[/mm] unterschiedlich sein

Wo hast du das gehört?

> müssen, stimmt das?

Nein.

Es gibt Polstellen, wo sich das Vorzeichen wechselt aber auch welche ohne Wechsel. Dazu vielleicht einmal dieser Link:

http://www.serlo.org/math/wiki/article/view/polstelle

>  
> Und hat die Funktion [mm]g(x)=(x-2)*e^x[/mm] eine waagrechte
> Asymptote?

Jop. Schau dir dazu einmal den Grenzwert [mm] x\to-\infty [/mm] an.
Für [mm] x\to\infty [/mm] explodiert die Funktion ja geradezu. Das sieht man sicherlich sofort ein.



Bezug
                
Bezug
Polstellen und Asymptoten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:39 Mo 03.02.2014
Autor: Idefix_2013

Okay, vielen Dank!

Zu g(x): Also spricht man in diesem Fall von einer Asymptote? Weil sie nähert sich ja nur für [mm] x\to-\infty [/mm] an die x-Achse an.

Danke!

Bezug
                        
Bezug
Polstellen und Asymptoten: Antwort
Status: (Antwort) fertig Status 
Datum: 00:24 Di 04.02.2014
Autor: Valerie20


> Okay, vielen Dank!

>

> Zu g(x): Also spricht man in diesem Fall von einer
> Asymptote? Weil sie nähert sich ja nur für [mm]x\to-\infty[/mm] an
> die x-Achse an.

Nein, so kann man das nicht sagen.
Es gibt sowohl senkrechte als auch waagerechte Asymptoten.

In f(x) ist x=0 eine senkrechte asymptote (Polstelle).
Bei g(x) hast du für x gegen minus unendlich eine waagerechte asymptote bei y=0.

Sieh dir deine Unterlagen nocheinmal genau durch, oder hier:

http://www.poenitz-net.de/Mathematik/4.Funktionen/4.6.S.Rationale%20Funktionen.pdf
 

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de