www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Polynom
Polynom < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:53 Di 24.11.2009
Autor: v0nny

Aufgabe
Sei q ein Polynom mit reellen Koeffizienten [mm] \in a_i \IR, [/mm] also q(x)= [mm] x^n+a_1 x^{n-1} [/mm] + [mm] ....+a_{n-1}x+a_n [/mm]
Zeigen Sie, dass es [mm] x_i, b_i, c_i \in \IR [/mm] gibt, so dass
[mm] q(x)=(x-x_1)....(x-x_k)((x-b_1)^2+c_1^2)....((x-b_l)^2+c_l^2) [/mm]

Hey Leute,

kann mir vllt jemand bei dieser Aufgabe helfen?
Ich weiß hier mal gar nicht was ich machen soll bzw. wie ich hier etwas zeigen soll!!
Kann mir vllt jemand die aufgabe erklären?

danke

        
Bezug
Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Di 24.11.2009
Autor: Al-Chwarizmi


> Sei q ein Polynom mit reellen Koeffizienten [mm]\in a_i \IR,[/mm]
> also q(x)= [mm]x^n+a_1 x^{n-1}[/mm] + [mm]....+a_{n-1}x+a_n[/mm]
>  Zeigen Sie, dass es [mm]x_i, b_i, c_i \in \IR[/mm] gibt, so dass
>  
> [mm]q(x)=(x-x_1)....(x-x_k)((x-b_1)^2+c_1^2)....((x-b_l)^2+c_l^2)[/mm]
>  Hey Leute,
>  
> kann mir vllt jemand bei dieser Aufgabe helfen?
>  Ich weiß hier mal gar nicht was ich machen soll bzw. wie
> ich hier etwas zeigen soll!!
>  Kann mir vllt jemand die aufgabe erklären?
>  
> danke


Hallo v0nny,

wie man dies im Einzelnen bewerkstelligt, sehe ich
auch erst zum Teil, aber ich kann kurz schildern,
worum es hier grundsätzlich geht. Ich nehme einmal
an, dass dir die Polynomdivision bekannt ist und dass
du schon weisst:  Wenn das Polynom q(x) die Null-
stelle [mm] x_1 [/mm] hat, so gilt [mm] q(x)=(x-x_1)*r(x), [/mm] wobei r(x)
ein Polynom vom Grad n-1 ist.
Hat q(x) die reellen Nullstellen [mm] x_1, x_2, [/mm] ... , [mm] x_k, [/mm]
(einzelne davon dürften auch mehrfach dastehen),
kann man zu jeder davon einen Linearfaktor aus-
klammern. Am Schluss bleibt so ein Polynom r(x)
vom Grad n-k übrig, das keine reelle Nullstelle
mehr hat. Der schwierigere Teil des Beweises wird
darin bestehen, zu zeigen, dass dieses Polynom
(falls es überhaupt einen Grad [mm] \ge [/mm] 2 hat) in Faktoren
der Form [mm] ((x-b_i)^2+c_i^2) [/mm] zerlegt werden kann.

Du stellst die Aufgabe in die Rubrik "reelle Analysis".
Solltest du aber eventuell auch schon den "Funda-
mentalsatz" der Algebra im Komplexen kennen,
gäbe es einen ziemlich einfachen Lösungsweg.


LG     Al-Chw.  




Bezug
                
Bezug
Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 05:32 Mi 25.11.2009
Autor: felixf

Hallo zusammen!

diese Frage wurde auch schon hier diskutiert.

LG Felix


Bezug
        
Bezug
Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Di 24.11.2009
Autor: reverend

Hallo v0nny,

Al hat in fast allem Recht (und das auch noch so gut wie immer. Ich gehöre zu seinen ganz persönlichen Neidern ;-)).

Hier sehe ich allerdings ein Problem in der zu beweisenden Aussage. In [mm] \IR [/mm] hat kein Polynom []irreduzible Faktoren mit einem Grad >2. Al verweist sogar auf [mm] \IC, [/mm] aber da gibt es keine Faktoren mit einem Grad >1. Die zu beweisende Aussage würde also nur dann nicht stimmen, wenn es auch irreduzible Faktoren vom Grad 3 gäbe, was immerhin möglich ist (nämlich dann, wenn ein solche Faktor keine Nullstelle besitzt). Dann aber würden wir uns offenbar weder in [mm] \IR [/mm] noch in [mm] \IC [/mm] bewegen.

Die Darstellung der quadratischen Faktoren bereitet mir allerdings Kopfzerbrechen. Wenn das eine Vereinfachung sein soll, sehe ich nicht, worin sie besteht.

lg
reverend

Bezug
                
Bezug
Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Mi 25.11.2009
Autor: Al-Chwarizmi


> Die Darstellung der quadratischen Faktoren bereitet mir
> allerdings Kopfzerbrechen. Wenn das eine Vereinfachung sein
> soll, sehe ich nicht, worin sie besteht.
>  
> lg
>  reverend


Hallo,

eine Vereinfachung ist es kaum, aber die Darstellungs-
weise (als Quadratsumme) soll wohl einem gewissen
Zweck dienen.
Da im gegebenen Polynom q(x) das [mm] x^n [/mm] mit dem Faktor 1
auftritt, kann man natürlich alle linearen Faktoren in
der Form [mm] (x-x_k) [/mm] und alle quadratischen in der Form
[mm] (x^2-a_i*x-d_i) [/mm] schreiben. Einen solchen quadratischen
Term kann man folgendermaßen zerlegen:

      $\ [mm] x^2-a_i*x-d_i\ [/mm] =\ [mm] (x-\underbrace{\frac{a_i}{2}}_{b_i})^2\underbrace{-\,\frac{a_i^{\,2}}{4}-d_i}_{g_i}\ [/mm] =\ [mm] (x-b_i)^2+g_i$ [/mm]

Wäre nun [mm] g_i=0 [/mm] oder [mm] g_i<0 [/mm] , so könnte man den quadratischen
Term  [mm] x^2-a_i*x-d_i [/mm]  in lineare Faktoren zerlegen.
(3. binomische Formel). Für jeden nicht faktorisier-
baren quadratischen Term ist also [mm] g_i>0 [/mm] und kann deshalb
als Quadrat geschrieben werden:  [mm] g_i=c_i^{\,2} [/mm] .

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de