www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Polynom
Polynom < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:29 Fr 09.11.2012
Autor: Ferma

Hallo,
wie kann man beweisen, dass a^(2n-1)+b^(2n-1) durch (a+b) teilbar ist?
Beispiele mit Zahlen [mm] 5^{2*3-1}+7^5=19932=>/12=1661 [/mm]
Danke im Voraus!
Ferma

        
Bezug
Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 Fr 09.11.2012
Autor: Marcel

Hallo,

> Hallo,
>  wie kann man beweisen, dass a^(2n-1)+b^(2n-1) durch (a+b)
> teilbar ist?
> Beispiele mit Zahlen [mm]5^{2*3-1}+7^5=19932=>/12=1661[/mm]

das ist aber "sehr grob" aufgeschrieben, aber ich weiß, was Du meinst. Übrigens
ist das nur EIN Beispiel. ;-)

>  Danke im Voraus!
>  Ferma

Vorschlag: Wenn man keine Idee hat, versuch' mal,
[mm] $$(a^{2n-1}+b^{2n-1}):(a+b)$$ [/mm]
per Polynomdivision zu lösen.

Wenn's nicht klappt oder Du so nichts erkennst/verwirrt bist, nicht siehst, wo diese
Polynomdiviion "endet", mach' es halt mal beispielsweise erst für konkrete [mm] $n\,,$ [/mm]
etwa für [mm] $n=3\,$ [/mm] wie oben (aber [mm] $a,b\,$ [/mm] "allgemein" lassen!), dann mal etwa für [mm] $n=7\,.$ [/mm]

Wenn man dann sieht: Okay, Polynomdivision liefert:
[mm] $$(a^{2n-1}+b^{2n-1}):(a+b)=\text{Vermutung}(n)$$ [/mm]
wobei [mm] $\text{Vermutung}(n)$ [/mm] vermutlich irgendeine Formel ist, wo eine Summe drin
vorkommt, dann beweist man das ganze, indem man mit
[mm] $$(a+b)*\text{Vermutung}(n)$$ [/mm]
startet und dann hoffentlich zeigen kann, dass das am Ende [mm] $=a^{2n-1}+b^{2n-1}$ [/mm]
ergibt!

Gruß,
  Marcel

Bezug
        
Bezug
Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Fr 09.11.2012
Autor: fred97

Du kannst das auch induktiv erledigen:

Für den Induktionsschritt:

[mm] a^{2n+1}+b^{2n+1}=a^{2n-1}a^2+a^{2n-1}b^2-a^{2n-1}b^2+b^{2n-1}b^2 [/mm]

Mach Du mal weiter.

FRED

Bezug
        
Bezug
Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Fr 09.11.2012
Autor: reverend

Hallo Ferma,

>  wie kann man beweisen, dass a^(2n-1)+b^(2n-1) durch (a+b)
> teilbar ist?
> Beispiele mit Zahlen [mm]5^{2*3-1}+7^5=19932=>/12=1661[/mm]

Wenn Du das nur in [mm] \IN [/mm] oder [mm] \IZ [/mm] zeigen willst, ist es ganz einfach.
Wir betrachten das alles mal [mm] \mod{(a+b)}. [/mm]

Dann ist klar, dass [mm] b\equiv -a\mod{(a+b)} [/mm] ist und damit

[mm] a^{2n-1}+b^{2n-1}\equiv a^{2n-1}+(-a)^{2n-1}\equiv 0\mod{(a+b)} [/mm]

Genauso leicht kann man dann zeigen, dass [mm] (a-b)\big|a^n-b^n. [/mm] Aber das war hier ja gar nicht gefragt.

Grüße
reverend



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de