Polynom von ungeradem Grad < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:50 Mo 14.12.2009 | Autor: | Juliia |
Hallo, habe eine Aufgabe:
Zeigen Sie, dass jedes Polynom von ungradem Grad mindestens eine reelle Nullstelle hat.
Habe mir überlegt und rausbekommen:
Sei f: [mm] \IR \to \IR [/mm] gegeben durch f(x)= [mm] a_{m} x^{m} [/mm] + [mm] a_{m-1}x^{m-1} [/mm] + ... + [mm] a_{0} x^{0}, [/mm] wobei m ungerade sei und [mm] a_{m} \not= [/mm] 0.
Sie ohne Einschränkung [mm] a_{m}=1 [/mm] angenommen - die Division durch [mm] a_{m} [/mm] ändert die Nullstellen nicht.
Es ist [mm] \limes_{x\rightarrow\-infty} [/mm] f(x) = [mm] \limes_{x\rightarrow\-infty}x^{m} [/mm] (1 + [mm] a_{m-1}x^{-1} [/mm] + ... + [mm] a_{0} x^{-m}) [/mm] = - [mm] \infty
[/mm]
[mm] \limes_{x\rightarrow\infty} [/mm] f(x) = [mm] \limes_{x\rightarrow\infty}x^{m} [/mm] (1 + [mm] a_{m-1}x^{-1} [/mm] + ... + [mm] a_{0} x^{-m}) [/mm] = [mm] \infty
[/mm]
Damit gibt es ein a [mm] \in \IR_{<0} [/mm] mit f(a)<0 und ein b [mm] \in \IR_{>0} [/mm] mit f(b)>0. Da f stetig ist, gibt es nach dem Zwischenwertsatz nun ein [mm] \varepsilon \in [/mm] [a, b] mit [mm] f(\varepsilon)=0
[/mm]
Kann das jemand überprüfen?
Danke!
|
|
|
|
Hallo Julia,
> Hallo, habe eine Aufgabe:
> Zeigen Sie, dass jedes Polynom von ungradem Grad
> mindestens eine reelle Nullstelle hat.
> Habe mir überlegt und rausbekommen:
> Sei f: [mm]\IR \to \IR[/mm] gegeben durch f(x)= [mm]a_{m} x^{m}[/mm] +
> [mm]a_{m-1}x^{m-1}[/mm] + ... + [mm]a_{0} x^{0},[/mm] wobei m ungerade sei
> und [mm]a_{m} \not=[/mm] 0.
> Sie ohne Einschränkung [mm]a_{m}=1[/mm] angenommen - die Division
> durch [mm]a_{m}[/mm] ändert die Nullstellen nicht.
> Es ist [mm]\limes_{x\rightarrow\-infty}[/mm] f(x) =
> [mm]\limes_{x\rightarrow\-infty}x^{m}[/mm] (1 + [mm]a_{m-1}x^{-1}[/mm] + ...
> + [mm]a_{0} x^{-m})[/mm] = - [mm]\infty[/mm]
>
> [mm]\limes_{x\rightarrow\infty}[/mm] f(x) =
> [mm]\limes_{x\rightarrow\infty}x^{m}[/mm] (1 + [mm]a_{m-1}x^{-1}[/mm] + ... +
> [mm]a_{0} x^{-m})[/mm] = [mm]\infty[/mm]
> Damit gibt es ein a [mm]\in \IR_{<0}[/mm] mit f(a)<0 und ein b [mm]\in \IR_{>0}[/mm]
> mit f(b)>0. Da f stetig ist, gibt es nach dem
> Zwischenwertsatz nun ein [mm]\varepsilon \in[/mm] [a, b] mit
> [mm]f(\varepsilon)=0[/mm]
Deine Argumentation ist goldrichtig, aber wozu brauchtest du die Annahme [mm] $a_m=1$ [/mm] ?
Ob das nun 1 ist oder nicht, ändert an deiner Argumentation nix.
Je nachdem, ob [mm] $a_m>0$ [/mm] oder [mm] $a_m<0$ [/mm] ist, sind die Rollen der GWe für [mm] $x\to\pm\infty$ [/mm] vertauscht ...
> Kann das jemand überprüfen?
> Danke!
LG
schachuzipus
|
|
|
|