www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Polynomansatz
Polynomansatz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomansatz: Schubser
Status: (Frage) beantwortet Status 
Datum: 11:38 Mo 03.12.2007
Autor: steffenhst

Aufgabe
Ermitteln Sie ein Fundamentalsystem folgender DGL mit einem Polynomansatz:

[mm] (1+x^{2})y'' [/mm] - 4xy' + 6y = 0

Hallo an alle,
ich habe nur eine Frage bzgl. des Polynomansatzes. Was ist damit genau gemeint, dass ich einfach annehme eine Lösung hat die Form y(x) = ax+b und das dann einsetze oder stecken da andere Mytserien dahinter? Wen dem so sein sollte, also das ich einfach solch ein y(x) annehme, woher weiß ich, von welchem Grad das Polynom sein soll?
Danke für eure Hilfe.
Grüße, Steffen

        
Bezug
Polynomansatz: Polynom 4. Grades
Status: (Antwort) fertig Status 
Datum: 11:42 Mo 03.12.2007
Autor: Roadrunner

Hallo Steffen!


Bei einem Polynom ist der Grad von $y''_$ um 2 geringer als das Ausgangspolynom $y_$ .

Aufgrund des Termes [mm] $(1+x^2)*y''$ [/mm] ergibt sich daraus für $y_$ ein Polynom 4. Grades, da der Term $y_$ alleine in der DGL steht.


Gruß vom
Roadrunner


Bezug
                
Bezug
Polynomansatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:07 Mo 03.12.2007
Autor: steffenhst

Hallo Roadrunner,
vielen Dank das hat mir sehr geholfen [Eine Lösung ist y(x)= [mm] 3x^{2} [/mm] - 1]. Ich kann aber nicht ganz nachvollziehen, wie du auf den 4.Grad gekommen bist.  

> Bei einem Polynom ist der Grad von [mm]y''_[/mm] um 2 geringer als
> das Ausgangspolynom [mm]y_[/mm] .

klar.

> Aufgrund des Termes [mm](1+x^2)*y''[/mm] ergibt sich daraus für [mm]y_[/mm]
> ein Polynom 4. Grades, da der Term [mm]y_[/mm] alleine in der DGL
> steht.

Folgt das daraus, weil dort [mm] x^2 [/mm] in der Klammer steht, also ein Polynom 2.Grades, und wenn y'' vom Grad n-2 ist, geht nur 4, da 4-2=2?
Danke, Steffen


Bezug
                        
Bezug
Polynomansatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Mi 05.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Polynomansatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Fr 14.12.2007
Autor: Creep

Probier den Potenzreihenansatz und mach Koeffizientenvergleich

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de