www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Polynomdivision - Divisor
Polynomdivision - Divisor < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision - Divisor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Mo 29.09.2008
Autor: jwacalex

Aufgabe
a) [mm] x^4 [/mm]  + [mm] 6x^3 [/mm]  + [mm] 9x^2 [/mm]
b) [mm] x^4 [/mm] + [mm] 2x^3 [/mm] + [mm] 25x^2 [/mm] + 50x

Hallo!
Wie kann ich für die beiden Gleichungen die Divisoren finden, sodass ich einen Polynomdivision durchführen kann.

Bei a) ist es mir überhaupt nicht klar, dort habe ich angefangen
für den Divisor [mm] x^2 [/mm] auszuklammern. Jedoch komme ich nicht weiter. Mir ist klar, bzw. habe in Erinnerung, dass ich einen Teiler von 9 brauchen werden.
Durch Try&Error bin ich auf folgenden Divisor gekommen: x + 3.

Bei b) kann ich x ausklammen und suche dann Teiler für 50.  Also habe ich alle Teiler für 50 sowohl positiv als auch negativ durchprobiert und bin schließlich auf den Divisor x - 2 gestoßen

Meine Frage: Wie kann ich das ohne Rumprobieren finden, bzw. die komm ich auf den Divisor bei Aufgabe a)

        
Bezug
Polynomdivision - Divisor: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Mo 29.09.2008
Autor: abakus


> a) [mm]x^4[/mm]  + [mm]6x^3[/mm]  + [mm]9x^2[/mm]
>  b) [mm]x^4[/mm] + [mm]2x^3[/mm] + [mm]25x^2[/mm] + 50x
>  Hallo!
>  Wie kann ich für die beiden Gleichungen die Divisoren
> finden, sodass ich einen Polynomdivision durchführen kann.
>
> Bei a) ist es mir überhaupt nicht klar, dort habe ich
> angefangen
>  für den Divisor [mm]x^2[/mm] auszuklammern. Jedoch komme ich nicht
> weiter. Mir ist klar, bzw. habe in Erinnerung, dass ich
> einen Teiler von 9 brauchen werden.
>  Durch Try&Error bin ich auf folgenden Divisor gekommen: x
> + 3.
>  
> Bei b) kann ich x ausklammen und suche dann Teiler für 50.  
> Also habe ich alle Teiler für 50 sowohl positiv als auch
> negativ durchprobiert und bin schließlich auf den Divisor x
> - 2 gestoßen
>  
> Meine Frage: Wie kann ich das ohne Rumprobieren finden,
> bzw. die komm ich auf den Divisor bei Aufgabe a)

Nach dem Ausklammern von [mm] x^2 [/mm] bleibt als zweiter Faktor [mm] x^2+6x+9 [/mm] übrig.
Klingelts?
Wenn nicht, wiederhole die binomischen Formeln.
Viele Grüße
Abakus

Bezug
                
Bezug
Polynomdivision - Divisor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Mo 29.09.2008
Autor: jwacalex

>Klingelts?
jepp danke :)

Bleibt nur noch offen wie ich die Divisoren finden kann

Bezug
                        
Bezug
Polynomdivision - Divisor: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 29.09.2008
Autor: leduart

Hallo
mit den Teilern von 50 hast du recht. Ne kurze oder einfache Loesung gibts nicht. Fuer die Schule gibts ne psychologische.
95% aller Aufgaben haben 1 , -1, 2,-2 als Nullstellen!
3% noch +3 und -3, der Rest stammt von sadistischen LehrerInnen. [grins]
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de