www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Polynome
Polynome < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynome: ggT, Polynomdivision
Status: (Frage) beantwortet Status 
Datum: 11:34 Mi 13.05.2009
Autor: Derrec

Aufgabe
Zeigen Sie, dass die beiden Polynome f = [mm] X^3 [/mm] + [mm] 3X^2 [/mm] + 1 und g = [mm] X^6 [/mm] +
[mm] X^5 [/mm] + [mm] X^4 [/mm] + [mm] X^3 [/mm] + [mm] X^2 [/mm] + 1 aus R[X] teilerfremd sind, d.h. ggT(f, g) = 1.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



Hallo liebe Forumgemeinschaft,

Ich habe folgendes Problem. Die Aufgabe ist eigentlich absolut nicht schwer wie ich finde, jedoch komme ich nicht auf das richtige Ergebnis.
Ich soll ja zeigen das der ggT(f,g) = 1 ist.

Daraus folgt ja im Grunde genommen der euklidische Algorithmus. Und somit muss ich das mit Polynomdivision machen.

Ich habe das jetzt 3 mal ausgerechnet und komme immer wieder drauf, das der ggt nicht 1 ist.

Ich schreibe mal kurz meine Lösung auf:


[mm] X^6 [/mm] + [mm] X^5 [/mm] + [mm] X^4 [/mm] + [mm] X^3 [/mm] + [mm] X^2 [/mm] + 1 = [mm] (x^3 [/mm] - [mm] 2x^2 [/mm] + 7x - 21) * [mm] (X^3 [/mm] + [mm] 3X^2 [/mm] + 1) + [mm] (66x^2 [/mm] - 7x + 22)

[mm] X^3 [/mm] + [mm] 3X^2 [/mm] + 1                        = (1/66 x + 205/4356 ) * ( [mm] 66x^2 [/mm] - 7x + 22) + (-17/4356x - 7/198)

[mm] 66x^2 [/mm] - 7x + 22                   = (-287496/17 x + 44792748/289) * (-17/4356x - 7/198) + 1589940/289

-17/4356x - 7/198                = (-4913/6925778640 x - 2023/314808220) * (1589940/289) + 0


Und damit wäre der ggT(f,g) nicht 1 sondern 1589940/289 und das ist ja falsch....

Könnt ihr mir bitte weiterhelfen und mir sagen wo mein Fehler liegt?

MfG


        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Mi 13.05.2009
Autor: leduart

Hallo
Bei Polynomen ist der ggT 1 wenn der ggT ein Polynom 0ten Grades, also ne Konstante ist. Die "1" im Polynomraum ist das konst. Polynom. (deine Rechng hab ich nicht ueberprueft)
Gruss leduart

Bezug
                
Bezug
Polynome: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:10 Mi 13.05.2009
Autor: Derrec

Aufgabe
Soll das jetzt heißen, egal was dabei herauskommt, also für die Konstante wie in meinem Fall 1589940/289, ist der ggT = 1?

Das heißt ich könnte auch 90 herausbekommen oder ähnliches und es wäre 1?


Danke erstmal Leduart für deine Antwort.
Aber verstehen tu ich sie leider nicht so recht, außer wenn das richtig ist, was ich eben in den Aufgabenstellungskasten geschrieben habe.

Danke nochmal


Bezug
                        
Bezug
Polynome: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Mi 13.05.2009
Autor: SEcki


>  Aber verstehen tu ich sie leider nicht so recht, außer
> wenn das richtig ist, was ich eben in den
> Aufgabenstellungskasten geschrieben habe.

Ein ggT ist nicht eindeutig, sondern nur bis auf Assoziiertheit eindeutig. Das heisst, sind g und h ein ggT von von zwei Elementen, dann gibt es eine Einheit r mit [m]g=r*h[/m]. In [m]\IR[x][/m] sind alle Polynome vom Grad 0, die ungleich 0 sind, Einheiten. In Polynomringen fordert man meist noch, dass der Leitkoeffizient, also das Element ungleich 0 mit höchsten Grad eines Elements, gleich 1 ist - dh man muss noch durch eine Einheit teilen.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de