www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Polynominterpolation
Polynominterpolation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynominterpolation: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:18 Mo 02.01.2012
Autor: meely

Aufgabe
Man bestimme das Interpolationspolynom p(x) vom Grad 3
zu dem Datensatz: p(0)=3,p(1)=0,p(2)=-1,p(3)=0

hallo :) hab wieder mal eine frage:

nach lagrange [mm] p(x)=\summe_{i=0}^{n}{y(i)\phi(x)} [/mm]

[mm] \phi i(x)=\bruch{(x-x(0))(x-x(1))....(x-x(n))}{(x(i)-x(0))...(x(i)-x(n))} [/mm]

folgt für [mm] \phi 0(x)=\bruch{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)}=\bruch{-1}{6}*(x-1)(x-2)(x-3) [/mm]

damit ich mein p(x) berechnen kann, muss ich doch nun noch [mm] \phi [/mm] 1(x), [mm] \phi [/mm] 2(x) und [mm] \phi [/mm] 3(x) bilden. jedoch bin ich mir hier nicht sicher ob ich nicht einen denkfehler habe.

für [mm] \phi 1(x)=\bruch{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)}=\bruch{1}{2}*x(x-2)(x-3) [/mm]

[mm] \phi 2(x)=\bruch{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)}=\bruch{-1}{2}*x(x-1)(x-3) [/mm]

[mm] \phi 3(x)=\bruch{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)}=\bruch{1}{6}*x(x-1)(x-2) [/mm]

ich bin mir nicht sicher ob ich die formel richtig angewendet habe..

nach [mm] p(x)=\summe_{i=0}^{n}{y(i)\phi(x)}=\phi 0(x)*y(0)+\phi 1(x)*y(1)+\phi 2(x)*y(2)+\phi [/mm] 3(x)*y(3) = [mm] \bruch{1}{3}*(x^{3}-3x^{2}-x+3) [/mm]

gesucht ist dann noch p für x=1/2 also p(x)=5/8. jedoch ist in der lösung der aufgabe p(1/2)=5/4 ... könnt ihr vielleicht einen fehler entdecken? würde mir sehr helfen :)

Liebe Grüße Meely :D

        
Bezug
Polynominterpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:55 Mo 02.01.2012
Autor: MathePower

Hallo meely,

> Man bestimme das Interpolationspolynom p(x) vom Grad 3
>  zu dem Datensatz: p(0)=3,p(1)=0,p(2)=-1,p(3)=0
>  hallo :) hab wieder mal eine frage:
>  
> nach lagrange [mm]p(x)=\summe_{i=0}^{n}{y(i)\phi(x)}[/mm]
>  
> [mm]\phi i(x)=\bruch{(x-x(0))(x-x(1))....(x-x(n))}{(x(i)-x(0))...(x(i)-x(n))}[/mm]
>  
> folgt für [mm]\phi 0(x)=\bruch{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)}=\bruch{-1}{6}*(x-1)(x-2)(x-3)[/mm]
>  
> damit ich mein p(x) berechnen kann, muss ich doch nun noch
> [mm]\phi[/mm] 1(x), [mm]\phi[/mm] 2(x) und [mm]\phi[/mm] 3(x) bilden. jedoch bin ich
> mir hier nicht sicher ob ich nicht einen denkfehler habe.
>  
> für [mm]\phi 1(x)=\bruch{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)}=\bruch{1}{2}*x(x-2)(x-3)[/mm]
>  
> [mm]\phi 2(x)=\bruch{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)}=\bruch{-1}{2}*x(x-1)(x-3)[/mm]
>  
> [mm]\phi 3(x)=\bruch{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)}=\bruch{1}{6}*x(x-1)(x-2)[/mm]
>  
> ich bin mir nicht sicher ob ich die formel richtig
> angewendet habe..
>  
> nach [mm]p(x)=\summe_{i=0}^{n}{y(i)\phi(x)}=\phi 0(x)*y(0)+\phi 1(x)*y(1)+\phi 2(x)*y(2)+\phi[/mm]
> 3(x)*y(3) = [mm]\bruch{1}{3}*(x^{3}-3x^{2}-x+3)[/mm]
>  
> gesucht ist dann noch p für x=1/2 also p(x)=5/8. jedoch
> ist in der lösung der aufgabe p(1/2)=5/4 ... könnt ihr
> vielleicht einen fehler entdecken? würde mir sehr helfen
> :)
>  


Die [mm]\phi_{i}\left(x\right), \ i=1,2,3,4[/mm] stimmen.

Der Fehler muss bei der Bildung
des Interpolationspolynoms passiert sein.


> Liebe Grüße Meely :D


Gruss
MathePower

Bezug
                
Bezug
Polynominterpolation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Mo 02.01.2012
Autor: meely


> > nach [mm]p(x)=\summe_{i=0}^{n}{y(i)\phi(x)}=\phi 0(x)*y(0)+\phi 1(x)*y(1)+\phi 2(x)*y(2)+\phi[/mm]
> > 3(x)*y(3) = [mm]\bruch{1}{3}*(x^{3}-3x^{2}-x+3)[/mm]

>
> Die [mm]\phi_{i}\left(x\right), \ i=1,2,3,4[/mm] stimmen.
>  
> Der Fehler muss bei der Bildung
>  des Interpolationspolynoms passiert sein.

>
> Gruss
>  MathePower

danke für deine antwort. gibt mir schon mal sehr viel sicherheit, dass ich die formel anwenden kann :)



[mm] \phi 0(x)=\bruch{(x-1)(x-2)(x-3)}{(0-1)(0-2)(0-3)}=\bruch{-1}{6}*(x-1)(x-2)(x-3) [/mm]
[mm] \phi 1(x)=\bruch{(x-0)(x-2)(x-3)}{(1-0)(1-2)(1-3)}=\bruch{1}{2}*x(x-2)(x-3) [/mm]
[mm] \phi 2(x)=\bruch{(x-0)(x-1)(x-3)}{(2-0)(2-1)(2-3)}=\bruch{-1}{2}*x(x-1)(x-3) [/mm]
[mm] \phi 3(x)=\bruch{(x-0)(x-1)(x-2)}{(3-0)(3-1)(3-2)}=\bruch{1}{6}*x(x-1)(x-2) [/mm]

da y(1)=y(3)=0 muss ich nach lagrange [mm]p(x)=\summe_{i=0}^{n}{y(i)\phi(x)}[/mm]
doch nur die summe [mm] p(x)=\phi 0(x)*y(0)+\phi 2(x)*y(2)=\bruch{-1}{6}*(x-1)(x-2)(x-3)*3+\bruch{-1}{2}*x(x-1)(x-3)*(-1) [/mm]

und genau jetzt habe ich meinen fehler entdeckt: habe vergessen [mm] \phi [/mm] 0(x) mit y(0) zu multiplizieren ;)

dann lautet das ergebnis für [mm] p(x)=x^{2}-4x+3 [/mm] was an der stelle x=1/2 klarerweise 5/4=p(x) ergibt :)

danke trotzdem vielmals :)

Liebe Grüße Meely

Bezug
                        
Bezug
Polynominterpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Mo 02.01.2012
Autor: M.Rex

Hallo

Das Polynom

$ [mm] p(x)=x^{2}-4x+3 [/mm] $

erfüllt in der Tat die Bedingungen, p(0)=3,p(1)=0,p(2)=-1,p(3)=0  aber es ist eben nicht vom Grad 3.

Deine Rechung ist aber korrekt.

Marius





Bezug
                                
Bezug
Polynominterpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:42 Mo 02.01.2012
Autor: meely


> Hallo
>  
> Das Polynom
>  
> [mm]p(x)=x^{2}-4x+3[/mm]
>  
> erfüllt in der Tat die Bedingungen,
> p(0)=3,p(1)=0,p(2)=-1,p(3)=0  aber es ist eben nicht vom
> Grad 3.
>  
> Deine Rechung ist aber korrekt.
>  
> Marius
>  

danke für deine antwort :)

ja da hast du recht, allerdings glaube ich dass sich mein professor in der angabe geirrt hat, da ich nie auf ein polynom 3. grades komme.

Liebe Grüße Meely :)

Bezug
                                        
Bezug
Polynominterpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:46 Mo 02.01.2012
Autor: M.Rex


>
> danke für deine antwort :)
>  
> ja da hast du recht, allerdings glaube ich dass sich mein
> professor in der angabe geirrt hat, da ich nie auf ein
> polynom 3. grades komme.

4 Bedingungen führen aber normalerweise schon zu einem Polynom 3. Grades f(x)=ax³+bx²+cx+d  hier bekommst du aber im Verlauf der Rechnung a=0, was schon ungewöhnlich ist, und normalerweise auch ausgeschlossen wird.

>  
> Liebe Grüße Meely :)

Marius


Bezug
                                                
Bezug
Polynominterpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:51 Mo 02.01.2012
Autor: meely



> 4 Bedingungen führen aber normalerweise schon zu einem
> Polynom 3. Grades f(x)=ax³+bx²+cx+d  hier bekommst du
> aber im Verlauf der Rechnung a=0, was schon ungewöhnlich
> ist, und normalerweise auch ausgeschlossen wird.
>
> Marius
>  

Also weil nicht ausgeschlossen, ist mein Ergebnis möglich ?!

Liebe Grüße Meely


Bezug
                                                        
Bezug
Polynominterpolation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:01 Di 03.01.2012
Autor: M.Rex


>
> Also weil nicht ausgeschlossen, ist mein Ergebnis möglich
> ?!

Ja, aber es ist hier dann eben nur ein 2-gradiges Polynom.

>  
> Liebe Grüße Meely
>  

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de