www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Positiv- und Negativteil
Positiv- und Negativteil < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Positiv- und Negativteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:58 Di 27.10.2015
Autor: James90

Hi!

Definition: [mm] f^+:=max\{f,0\} [/mm] und [mm] f^-:=max\{-f,0\}. [/mm]

i) [mm] f^{+}=-min\{-f,0\}: [/mm] Sei [mm] $f\ge [/mm] 0$, dann ist [mm] $-f\le [/mm] 0$ und somit [mm] -min\{-f,0\}=-(-f)=f=f^{+}. [/mm] Nun sei $f<0$, dann ist $-f>0$ und somit [mm] -min\{-f,0\}=-0=0=f^{+}. [/mm]

ii) [mm] f^{-}=-min\{f,0\}: [/mm]  Sei [mm] $f\ge [/mm] 0$, dann ist [mm] -min\{f,0\}=0=f^{-}. [/mm] Sei nun f<0, dann ist [mm] -min\{f,0\}=-f=f^{-}. [/mm]

iii) [mm] $f^+\ge [/mm] 0$: Es ist [mm] f^+=max\{f,0\}. [/mm] Sei nun [mm] $f\ge [/mm] 0$, dann ist [mm] $f^+=f\ge [/mm] 0$. Sei f<0, dann ist [mm] $f^+=0\ge [/mm] 0$

iv) [mm] $f^-\ge [/mm] 0$: Es ist [mm] f^{-}=max\{-f,0\}. [/mm] Sei [mm] $f\ge [/mm] 0$, dann ist [mm] $-f\le [/mm] 0$ und somit [mm] $max\{-f,0\}=0\ge [/mm] 0$. Sei nun f<0, dann ist -f>0 und somit [mm] $max\{-f,0\}=f>0\ge [/mm] 0$

v) [mm] f=f^{+}-f^{-}: [/mm] Sei [mm] $f\ge [/mm] 0$, dann ist [mm] f^{+}=f [/mm] und [mm] f^{-}=0, [/mm] also f=f-0=f. Sei $f<0$, dann ist [mm] f^{+}=0 [/mm] und [mm] f^{-}=-f, [/mm] also f=0-(-f)=f.

vi) [mm] f^{+}+f^{-}=|f|: [/mm] Sei [mm] $f\ge [/mm] 0$, dann ist [mm] f^{+}=f [/mm] und [mm] f^{-}=0, [/mm] also f+0=f=|f|. Sei $f<0$, dann ist [mm] f^{+}=0 [/mm] und [mm] f^{-}=-f, [/mm] also 0+(-f)=-f=|f|.

Ich bitte um Korrektur! Vielen Dank!

        
Bezug
Positiv- und Negativteil: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 27.10.2015
Autor: leduart

Hallo
1. es gibt Funktionen die weder >= 0 noch <=0 sind etwa [mm] x^2-2 [/mm] oder sinx
deshalb ist deine Fallunterscheidung falsch.
ich sehe gerade deinen Punkt V $f=f^+-f^-$
dann ist also f keine Funktion. was weiss man über f?
Gruß leduart

Bezug
                
Bezug
Positiv- und Negativteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:17 Di 27.10.2015
Autor: tobit09

Hallo leduart!


>  ich sehe gerade deinen Punkt V [mm]f=f^+-f^-[/mm]
>  dann ist also f keine Funktion. was weiss man über f?

Wie kommst du darauf, dass f keine Funktion sei?

Ich gehe davon aus, dass f eine Abbildung mit Zielmenge [mm] $\IR$ [/mm] oder [mm] $\IR\cup\{-\infty,+\infty\}\$ [/mm] sein soll.

(Natürlich wäre es hilfreich, wenn James90 die entsprechende Information gleich mitgepostet hätte.)


Viele Grüße
Tobias

Bezug
                
Bezug
Positiv- und Negativteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:07 Mi 28.10.2015
Autor: James90

Die Behauptungen gelten nur punktweise.

https://de.wikipedia.org/wiki/Lebesgue-Integral#Integration_beliebiger_messbarer_Funktionen_und_Integrierbarkeit

Machen meine Beweise nun Sinn?

Bezug
        
Bezug
Positiv- und Negativteil: Antwort
Status: (Antwort) fertig Status 
Datum: 05:25 Mi 28.10.2015
Autor: fred97

Da alles punktweise gelten soll, hätte ich das auch so aufgeschrieben !

Ich mach Dir das z.B. für vi) mal vor, wobei [mm] \Omega [/mm] der Def.-Bereich von f sein soll.


vi) Behauptung: $ [mm] f^{+}+f^{-}=|f| [/mm] $ auf  [mm] \Omega. [/mm]


Beweis: Sei $x [mm] \in \Omega$ [/mm]

Fall 1: $ f(x) [mm] \ge [/mm] 0 $.

Dann ist $ [mm] f^{+}(x)=f(x)$ [/mm] und $ [mm] f^{-}(x)=0, [/mm] $ also [mm] $f^{+}(x)+f^{-}(x)=f(x)=|f(x)|. [/mm] $


Fall 2: $ f(x)<0$.

Dann ist $ [mm] f^{+}(x)=0 [/mm] $ und $ [mm] f^{-}(x)=-f(x), [/mm] $ also [mm] $f^{+}(x)+f^{-}(x)=-f(x)=|f(x)|. [/mm] $

FRED
.

Bezug
                
Bezug
Positiv- und Negativteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:35 Mi 28.10.2015
Autor: James90

Vielen Dank!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de