www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Positiv orientierte ON-Basis
Positiv orientierte ON-Basis < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Positiv orientierte ON-Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:14 Fr 15.01.2016
Autor: algieba

Hallo

Ich habe an einer konvexen Kurve an einem Punkt $s$ eine Tangente $T$ und eine Normale $N$ (zeigt nach innen).
Nun gibt es noch zwei weitere Vektoren $v$ und $w$ in diesem Punkt. v zeigt beliebig nach außen. Daher existiert der Winkel [mm] $\varphi$ [/mm] zwischen $T$ und $-v$ und [mm] $\varphi \in [0,\pi]$ [/mm]

Es gilt $v = [mm] -\sin (\varphi) [/mm] N - [mm] \cos (\varphi) [/mm] T$ (müsst ihr nicht nachrechnen, das stimmt)
Ich habe durch Rechnungen $w = [mm] -\cos (\varphi) [/mm] N + [mm] \sin (\varphi) [/mm] T$ erhalten.

Jetzt muss ich nur noch zeigen dass die beiden Vektoren eine positiv orientierte Orthonormal-Basis bilden.
Ich stehe auf dem Schlauch und bekomme es nicht hin.

Ich muss ja zeigen dass die Vektoren rechtwinklig aufeinander stehen, also:
[mm] $v\cdot [/mm] w = 0$

Das die Determinante von $(v,w)=0$ ist

und dass sie normiert sind.

Viele Grüße und vielen Dank

        
Bezug
Positiv orientierte ON-Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Fr 15.01.2016
Autor: fred97


> Hallo
>  
> Ich habe an einer konvexen Kurve an einem Punkt [mm]s[/mm] eine
> Tangente [mm]T[/mm] und eine Normale [mm]N[/mm] (zeigt nach innen).
>  Nun gibt es noch zwei weitere Vektoren [mm]v[/mm] und [mm]w[/mm] in diesem
> Punkt. v zeigt beliebig nach außen. Daher existiert der
> Winkel [mm]\varphi[/mm] zwischen [mm]T[/mm] und [mm]-v[/mm] und [mm]\varphi \in [0,\pi][/mm]
>  
> Es gilt [mm]v = -\sin (\varphi) N - \cos (\varphi) T[/mm] (müsst
> ihr nicht nachrechnen, das stimmt)
>  Ich habe durch Rechnungen [mm]w = -\cos (\varphi) N + \sin (\varphi) T[/mm]
> erhalten.
>  
> Jetzt muss ich nur noch zeigen dass die beiden Vektoren
> eine positiv orientierte Orthonormal-Basis bilden.
>  Ich stehe auf dem Schlauch und bekomme es nicht hin.
>
> Ich muss ja zeigen dass die Vektoren rechtwinklig
> aufeinander stehen, also:
>  [mm]v\cdot w = 0[/mm]
>  
> Das die Determinante von [mm](v,w)=0[/mm] ist

Du meinst sicher [mm](v,w)>0[/mm]


>  
> und dass sie normiert sind.
>  
> Viele Grüße und vielen Dank

Ich nehme an, dass N und T normiert sind. Ist das so ?

Wenn ja, so haben wir $N*N=1=T*T$ und $N*T=T*N=0$


Ich setze [mm] $s=sin(\varphi)$ [/mm] und [mm] $c:=cos(\varphi)$. [/mm] Dann


$v*w=scN*N-s^2N*T+c^2T*N-scT*T=0$

Weiter

[mm] $||v||=v*v=s^2N*N+scN*T+scT*N+c^2T*T=s^2+c^2=1$ [/mm]

Genauso sieht man [mm] ||w||^2=1$ [/mm]

FRED

Bezug
                
Bezug
Positiv orientierte ON-Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:52 Mo 18.01.2016
Autor: algieba

Hallo

Vielen Dank für die Antwort.
Ja die Tangente und Normale sind normiert.

Nun will ich noch zeigen dass $det(v,w) > 0$ ist.
Leider komme ich auf eine Determinante von -1:

[mm] $\vmat{ -\sin \varphi & -\cos \varphi \\ -\cos \varphi & \sin \varphi } [/mm] =  [mm] -\sin^2 \varphi [/mm] -  [mm] \cos^2 \varphi [/mm] = -1$

Viele Grüße

Bezug
                        
Bezug
Positiv orientierte ON-Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:02 Mi 20.01.2016
Autor: huddel

Hallo algieba,

für die lin. unabhängigkeit reicht $det(v,w) [mm] \ne [/mm] 0$ (es gilt ja auch $det(v,w) = -det(w,v)$)

LG
Marlon

Bezug
                                
Bezug
Positiv orientierte ON-Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Sa 30.01.2016
Autor: algieba

Hallo

Danke für deine Antwort

Ich möchte doch aber nicht zeigen dass die Vektoren linear unabhängig sind, sondern dass sie eine positiv orientierte Orthonormalbasis bilden. Dazu muss ich doch zeigen das $det(v,w) > 0$ oder nicht?
Was ist an meiner Rechnung falsch?

Bezug
                                        
Bezug
Positiv orientierte ON-Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:42 Mo 01.02.2016
Autor: huddel

Sorry, da habe ich mal wieder nicht richtig gelesen... Sorry...

Orientierung ist immer abhängig von einer Basis die du dir wählst. Wenn du die Äquivalenzklasse der Basen bzgl. der Standardbasis betrachtest, dann hast du recht und du musst einfach zeigen, dass $det(v,w)>0$ ist. Wenn du eine andere Basis betrachtest, dann wirst du erstmal eine basiswechselmatrix und dann deren Determinante berechnen müssen :)

LG
Huddel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de