www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Positive Definitheit
Positive Definitheit < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Positive Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Mi 06.05.2009
Autor: anna_s

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Sei [mm] A [/mm]  eine [mm] (m \times n) [/mm] Matrix, [mm] m < n [/mm] mit vollem Rang [mm] m [/mm].  Dann ist die Matrix [mm] AA^T [/mm]  (wobei [mm] A^T [/mm] die transonierte Matrix bezeichnet) eine [mm] m \times m [/mm] Matrix.

Meine Frage ist, ob diese Matrix  [mm] AA^T [/mm] positiv definit ist und ob es dafür einen schlaueren Beweis gibt, als [mm] x^T(AA^T)x [/mm] zu berechnen.
Vielen Dank,
Anna

        
Bezug
Positive Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Mi 06.05.2009
Autor: fred97

Im allgemeinen ist  $ [mm] AA^T [/mm] $ nicht positiv definit, sondern nur positiv semidefinit:

             es ist $ [mm] x^T(AA^T)x [/mm] = [mm] ||A^Tx||^2 \ge [/mm] 0 $  für jedes x

Ist also $A^Tx = 0$  und x [mm] \not= [/mm] 0, so ist $ [mm] x^T(AA^T)x [/mm] = 0$

FRED
                

Bezug
                
Bezug
Positive Definitheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 Mi 06.05.2009
Autor: anna_s

Danke für deine Antwort!
Wenn ich das richtig sehe, hast du gar nicht benutzt, dass [mm] AA^T [/mm] vollen Rang hat, sondern deine Antwort ist für eine beliebige Matrix [mm] A [/mm] gültig. Könnte es sein, dass man mit dieser zusätzlichen Angabe doch die Positive Definitheit oder zumindest die Invertierbarkeit erhält?

Grüße,
Anna

Bezug
                        
Bezug
Positive Definitheit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Mi 06.05.2009
Autor: fred97


> Danke für deine Antwort!
>  Wenn ich das richtig sehe, hast du gar nicht benutzt, dass
> [mm]AA^T[/mm] vollen Rang hat, sondern deine Antwort ist für eine
> beliebige Matrix [mm]A[/mm] gültig. Könnte es sein, dass man mit
> dieser zusätzlichen Angabe doch die Positive Definitheit
> oder zumindest die Invertierbarkeit erhält?
>  
> Grüße,
>  Anna


Du hast recht, dass [mm]AA^T[/mm] vollen Rang hat, hatte ich überlesen. In diesem Fall ist   [mm]AA^T[/mm] positiv definit.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de