www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Potential einer Kugel
Potential einer Kugel < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potential einer Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 So 18.09.2011
Autor: LordPippin

Hallo,
ich wollte das Potential einer homogen geladenen Kugel durch explizite Berechnung des Integrals berechnen.
Ich hänge jetzt hier fest
[mm] \phi(\vec{r})=\rho_{0}\integral_{|r'|\le R}^{}{\bruch{1}{|\vec{r}-\vec{r'}|}}d^3\vec{r'}=...=\bruch{2\pi \rho_{0}}{r}\integral{}^{}{r'(\wurzel{r^2+r'^2+2rr'}-\wurzel{r^2+r'^2-2rr'})dr'}=\bruch{2\pi \rho_{0}}{r}\integral{}^{}{r'(r+r'-|r-r'|)dr'} [/mm]
Nun muss ich ja unterscheiden, ob r<R oder [mm] r\ge [/mm] R

Hier komme ich jetzt nicht weiter. Vielleicht hat jemand einen Tip?

Gruß

LordPippin

        
Bezug
Potential einer Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 So 18.09.2011
Autor: rainerS

Hallo!

> Hallo,
>  ich wollte das Potential einer homogen geladenen Kugel
> durch explizite Berechnung des Integrals berechnen.
>  Ich hänge jetzt hier fest
>  [mm]\phi(\vec{r})=\rho_{0}\integral_{|r'|\le R}^{}{\bruch{1}{|\vec{r}-\vec{r'}|}}d^3\vec{r'}=...=\bruch{2\pi \rho_{0}}{r}\integral{}^{}{r'(\wurzel{r^2+r'^2+2rr'}-\wurzel{r^2+r'^2-2rr'})dr'}=\bruch{2\pi \rho_{0}}{r}\integral{}^{}{r'(r+r'-|r-r'|)dr'}[/mm]
>  
> Nun muss ich ja unterscheiden, ob r<R oder [mm]r\ge R[/mm]
>  
> Hier komme ich jetzt nicht weiter. Vielleicht hat jemand
> einen Tip?

Erstmal solltest du die Integrationsgrenzen an dein Integral schreiben, es ist

[mm] \bruch{2\pi \rho_{0}}{r}\integral_{0}^{R}{r'(r+r'-|r-r'|)dr'}[/mm] .

Damit siehst du sofort, dass [mm] $r'\le [/mm] R$ ist und damit im Fall [mm] $r\ge [/mm] R$ folgt, dass $|r-r'| = r-r'$ ist. Das Interal hängt also nicht von r ab; zusammen mit dem Vorfaktor ergibt sich das gewünschte $1/r$-Potential.

Im Fall $r<R$ zerlegst du dein Integral in die zwei Anteile [mm] $0\le r'\le [/mm] r$ und $r <r'<R$.

Viele Grüße
   Rainer

Bezug
                
Bezug
Potential einer Kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:15 Mo 19.09.2011
Autor: LordPippin

Hallo,
vielen Dank für deine Antwort. Habe jetzt folgende Potentiale, die mir richtig erscheinen.
[mm] \phi(\vec{r})=\begin{cases} \bruch{q}{r}, & \mbox{für } r\ge \mbox{ R} \\ \bruch{q}{2}(\bruch{3}{R}-\bruch{r^2}{R^3}), & \mbox{für } r< \mbox{ R} \end{cases} [/mm]                   wobei [mm] q=\bruch{4}{3}\rho_{0}R^3 [/mm]

Meine letzte Frage ist bezüglich der Fallunterscheidung. Kann man statt [mm] r{\ge}R [/mm] und r<R   auch   r>R und [mm] r{\le}R [/mm]  betrachten? In diesem Fall dürfte es doch egal sein, oder?

Gruß

LordPippin

Bezug
                        
Bezug
Potential einer Kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:46 Mo 19.09.2011
Autor: chrisno

Da nicht noch eine Extra-Ladung auf der Oberfläche sitzt, sollten beide Potentiale für r = R den gleichen Wert annehmen. Setze einfach r = R, so dass zum Beispiel nur noch r in den Formeln vorkommt. Das kannst Du auch als Probe ansehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de