www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Potentialfeld
Potentialfeld < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potentialfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Do 05.07.2012
Autor: BunDemOut

Aufgabe
Zeigen Sie, dass [mm] \vec{A(x,y,z)}=\sin{ r} \vektor{x \\ y \\z} [/mm] ein Potentialfeld ist, und geben Sie das Potential an. [mm] r(x,y,z)=\wurzel{x^2+y^2+z^2} [/mm]


Also, erstmal ist zu zeigen, dass die Rotation verschwindet. Dabei treten keine Probleme auf...

Als nächstes hätte ich das Potential auf folgende Art bestimmt

[mm] \phi(x,y,z)=\integral{\sin{r}*x dx}+K(y,z) [/mm]
Durch Substitution von [mm] u=x^2+y^2+z^2 [/mm] komme ich dann auf folgendes Integral:

[mm] \phi(x,y,z)=\bruch{1}{2} \integral{\sin{\wurzel{u}} du}+K(y,z) [/mm]
Und genau hier komme ich nicht mehr weiter...
Hätte auch schon versucht in Kugelkoordinaten zu transformieren, aber das macht das Ganze nicht gerade einfacher....

Danke für eure Hilfe!

        
Bezug
Potentialfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Do 05.07.2012
Autor: MathePower

Hallo BunDemOut,

> Zeigen Sie, dass [mm]\vec{A(x,y,z)}=\sin{ r} \vektor{x \\ y \\z}[/mm]
> ein Potentialfeld ist, und geben Sie das Potential an.
> [mm]r(x,y,z)=\wurzel{x^2+y^2+z^2}[/mm]
>  
> Also, erstmal ist zu zeigen, dass die Rotation
> verschwindet. Dabei treten keine Probleme auf...
>  
> Als nächstes hätte ich das Potential auf folgende Art
> bestimmt
>  
> [mm]\phi(x,y,z)=\integral{\sin{r}*x dx}+K(y,z)[/mm]
>  Durch
> Substitution von [mm]u=x^2+y^2+z^2[/mm] komme ich dann auf folgendes
> Integral:
>  
> [mm]\phi(x,y,z)=\bruch{1}{2} \integral{\sin{\wurzel{u}} du}+K(y,z)[/mm]
>  
> Und genau hier komme ich nicht mehr weiter...
>  Hätte auch schon versucht in Kugelkoordinaten zu
> transformieren, aber das macht das Ganze nicht gerade
> einfacher....
>  


Zunächst musst Du doch zeigen, daß die Rotation diese Feldes verschwindet.


> Danke für eure Hilfe!



Gruss
MathePower

Bezug
                
Bezug
Potentialfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 Do 05.07.2012
Autor: BunDemOut

Das habe ich ja bereits oben geschrieben und auch gemacht. :)

Bezug
                        
Bezug
Potentialfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Do 05.07.2012
Autor: MathePower

Hallo BunDemOut,

> Das habe ich ja bereits oben geschrieben und auch gemacht.
> :)

Sorry.

Um eine Stammfunktion des Integranden zu bestimmen,
substituiere

[mm]u^{2}=x^{2}+y^{2}+z^{2}[/mm]

Damit ergibt sich dann

[mm]\integral_{}^{}{u*\sin\left(u\right) \ du}[/mm]

Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de