www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Potenz
Potenz < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 So 30.11.2008
Autor: Beliar

Aufgabe
Beweisen Sie durch voll.Induk. nach n, dass für alle natürlichen Zahlen m und n gilt:
[mm] (1+m)^n \ge [/mm] 1+m*n.

Hallo,
also ich verstehe im Moment nicht wie ich das beweisen soll oder vielmehr kann.
Wenn ich für n =1 nehme passiert doch folgendes
[mm] (1+m)^1 \ge [/mm] 1+m*1  das ist dann doch
1+m   [mm] \ge [/mm] 1+1m also auf beiden Seiten das gleiche
wer mag mir hier weiterhelfen?
Danke für jeden Tip
Beliar

        
Bezug
Potenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:21 So 30.11.2008
Autor: schachuzipus

Hallo Reinhard,

> Beweisen Sie durch voll.Induk. nach n, dass für alle
> natürlichen Zahlen m und n gilt:
>  [mm](1+m)^n \ge[/mm] 1+m*n.
>  Hallo,
>  also ich verstehe im Moment nicht wie ich das beweisen
> soll oder vielmehr kann.

Zunächst nimmst du dir ein beliebiges [mm] $m\in\IN$ [/mm] als fest gegeben her, dann machst du die Induktion über $n$

>  Wenn ich für n =1 nehme passiert doch folgendes
>  [mm](1+m)^1 \ge[/mm] 1+m*1  das ist dann doch
>  1+m   [mm]\ge[/mm] 1+1m also auf beiden Seiten das gleiche
>  wer mag mir hier weiterhelfen?

Ja, da steht $1+m \ [mm] \ge [/mm] \ 1+m$

Das ist doch eine wahre Aussage, ich sehe da keinen Widerspruch

Es ist doch meinetwegen auch $5 \ ge \ 5$, oder nicht?

Nun weiter mit der Induktion:

Ind.vor.: Sei [mm] $n\in\IN$ [/mm] beliebig und gelte [mm] $(1+m)^n [/mm] \ [mm] \ge [/mm] \ [mm] 1+n\cdot{}m$ [/mm]

Dann ist im Induktionsschluss die Gültigkeit der Aussage für $n+1$ zu zeigen, zu zeigen ist also, dass gilt

[mm] $(1+m)^{n+1} [/mm] \ ge \ [mm] 1+(n+1)\cdot{}m$ [/mm]

Nimm dir dazu mal die linke Seite her, forme ein bisschen um, so dass du die Ind.vor. ins Spiel bringen kannst, weit ist es nicht mehr ... ;-)

>  Danke für jeden Tip
>  Beliar


LG

schachuzipus

Bezug
                
Bezug
Potenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:35 So 30.11.2008
Autor: Beliar

Also die  Frage die ich habe,
1+m [mm] \ge [/mm] 1+m ist also wahr, weil größer GLEICH gefragt ist ok
aber wie wird die linke Seite umgeformt
[mm] (1+m)^n+1 [/mm] wird daraus (1*n+1)+(m*n+1) also
n+1 + nm+ m und ist die Seite darum größer?

Bezug
                        
Bezug
Potenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:49 So 30.11.2008
Autor: schachuzipus

Hallo nochmal,

> Also die  Frage die ich habe,
>  1+m [mm]\ge[/mm] 1+m ist also wahr, weil größer GLEICH gefragt ist
> ok
>  aber wie wird die linke Seite umgeformt
>   [mm](1+m)^n+1[/mm] wird daraus (1*n+1)+(m*n+1) also
>  n+1 + nm+ m und ist die Seite darum größer?

Das ist leider nur schwerlich zu entziffern:

Schreibe Exponenten, Indizes und was auch immer mit mehr als 1 Zeichen in geschweifte Klammern {}

linke Seite: [mm] $(1+m)^{n+1}=(1+m)\cdot{}\red{(1+m)^n} [/mm] \ > \ [mm] (1+m)\cdot{}\red{(1+n\cdot{}m)}$ [/mm] nach Ind.vor.

Multipliziere da mal aus, sortiere um, denke daran, dass du zu [mm] $(1+(n+1)\cdot{}m)$ [/mm] hinkommen willst, halte das also im Blick


LG

schachuzipus


Bezug
                                
Bezug
Potenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 So 30.11.2008
Autor: Beliar

ok, ich versuche das mal
linke Seite:
(1+m)^(n+1) wird dann [mm] (1+m)^1 [/mm] und [mm] (1+m)^n [/mm] das verstehe ich
dann aus dem ersten teil (1+m) aus dem zweiten müsste dann ( 1n +mn) werden.
und zusammen ( 1+ 1n+mn+m) aber wie komme ich zu deinem Ergebnis?

Bezug
                                        
Bezug
Potenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 So 30.11.2008
Autor: schachuzipus

Hallo nochmal,

> ok, ich versuche das mal
>  linke Seite:
>  (1+m)^(n+1) wird dann [mm](1+m)^1[/mm] und [mm](1+m)^n[/mm] das verstehe
> ich
>  dann aus dem ersten teil (1+m) aus dem zweiten müsste dann
> ( 1n +mn) werden. [kopfkratz3]

In der Indvor. steht doch [mm] $(1+m)^n [/mm] \ > \ [mm] (1+n\cdot{}m)$ [/mm]

Wieso machst du daraus was anderes?

Wir haben nun [mm] $(1+m)^{n+1}=(1+m)(1+m)^n [/mm] \ > \ [mm] (1+m)(1+n\cdot{}m)$ [/mm] nach genau der Indvor.

[mm] $=1+nm+m+mnm=(1+(n+1)m)+nm^2$ [/mm]

Nun ist aber [mm] $nm^2>0$, [/mm] also nehmen wir das weg und verkleinern so weiter

[mm] $(1+(n+1)m)+nm^2 [/mm] \ > \ (1+(n+1)m)$

Und genau das war im Induktionsschritt zu zeigen.

Schaue dir mal die ganz linke Seite und die ganz rechte Seite an ohne alle Zwischenschritte, dann haben wir hier also gezeigt:

[mm] $(1+m)^{n+1} [/mm] \ > \ [mm] 1+(n+1)\cdot{}m$ [/mm]

genau das, was wir wollten



>  und zusammen ( 1+ 1n+mn+m) aber wie komme ich zu deinem
> Ergebnis?

LG

schachuzipus

Bezug
                                                
Bezug
Potenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:41 So 30.11.2008
Autor: Beliar

Danke so langsam wirds klar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de