www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Potenzen
Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 17:31 Mo 22.01.2007
Autor: doopey

Brauch hier mal eine Korrektur, da ich total unsicher bei den Potenzen bin ^^

Danke, schonmal!
[mm] (a^{0,6})^{1,2} [/mm]

Da hab ich folgenes Ergebnis raus:
[mm] a^{0,72} [/mm]

(Hoffe das das mit diesen Zeichen unten geklappt hat, weil ich da auch noch nicht so durchblicke ;) )



        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mo 22.01.2007
Autor: Stefan-auchLotti


> Brauch hier mal eine Korrektur, da ich total unsicher bei
> den Potenzen bin ^^
>  
> Danke, schonmal!
>  [mm](a^{0,6})^{1,2}[/mm]
>  
> Da hab ich folgenes Ergebnis raus:
>  [mm]a^{0,72}[/mm]
>  
> (Hoffe das das mit diesen Zeichen unten geklappt hat, weil
> ich da auch noch nicht so durchblicke ;) )
>  
>  

[mm] $\rmfamily \text{Hi,}$ [/mm]

[mm] $\rmfamily \text{Korrekt, die Regel ist }\left(a^n\right)^{m}=a^{n*m}\text{.}$ [/mm]

[mm] $\rmfamily \text{Gruß, Stefan.}$ [/mm]

Bezug
                
Bezug
Potenzen: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 17:41 Mo 22.01.2007
Autor: doopey

Hier ist nochmal so eine komische Aufgabe *hehe*

~Danke für eben, mal was richtig ;) ~

Also hier lautet die Aufgabe:

b^- [mm] \bruch{1}{2} [/mm]
-----------------------
[mm] \wurzel[2]{b} [/mm]

Der Strich soll ein Bruchstrich sein, finde den grad nicht!

Danke nochmal :)

Bezug
                        
Bezug
Potenzen: sorry, was falsch!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Mo 22.01.2007
Autor: doopey

Nochmal die Aufgabe...

das obere auf dem Bruchstrich soll:

b hoch [mm] -\bruch{1}{2} [/mm]

und ich habe raus:

[mm] b^{-1} [/mm]

Bezug
                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Mo 22.01.2007
Autor: Stefan-auchLotti


> Hier ist nochmal so eine komische Aufgabe *hehe*
>  
> ~Danke für eben, mal was richtig ;) ~
>  
> Also hier lautet die Aufgabe:
>  
> b^- [mm]\bruch{1}{2}[/mm]
>  -----------------------
>  [mm]\wurzel[2]{b}[/mm]
>  
> Der Strich soll ein Bruchstrich sein, finde den grad
> nicht!
>  
> Danke nochmal :)

[mm] $\rmfamily \text{Hast du Ansätze? Hier musst du das folgendes Gesetz anwenden: }\bruch{a^{m}}{a^{n}}=a^{m-n}$ [/mm]

[mm] $\rmfamily \text{Tipp: du musst hier was leicht umschreiben.}$ [/mm]

[mm] $\rmfamily \text{Stefan.}$ [/mm]

Bezug
                                
Bezug
Potenzen: Idee
Status: (Frage) beantwortet Status 
Datum: 17:49 Mo 22.01.2007
Autor: doopey

Also, ich bin mir nicht sicher, aber habe ein Ergebnis:

[mm] b^{-1} [/mm]

Bezug
                                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Mo 22.01.2007
Autor: Stefan-auchLotti


> Also, ich bin mir nicht sicher, aber habe ein Ergebnis:
>  
> [mm]b^{-1}[/mm]  

[mm] $\rmfamily \text{Stimmt!}$ [/mm]

[mm] $\rmfamily \text{Stefan.}$[/mm]

Bezug
                                                
Bezug
Potenzen: Ansatz felht mir
Status: (Frage) beantwortet Status 
Datum: 18:03 Mo 22.01.2007
Autor: doopey

Jetzt hat es richtig gut geklappt, aber hänge an den letzten Aufgaben und da fehlt mir der Ansatz!

[mm] (r^{3}\*s^{-5})^{0,7} [/mm]

Weil da ist doch Basis und Exponenten voll unterschiedlich -.-

Bezug
                                                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mo 22.01.2007
Autor: Stefan-auchLotti


> Jetzt hat es richtig gut geklappt, aber hänge an den
> letzten Aufgaben und da fehlt mir der Ansatz!
>  
> [mm](r^{3}\*s^{-5})^{0,7}[/mm]
>  
> Weil da ist doch Basis und Exponenten voll unterschiedlich
> -.-

[mm] $\rmfamily \text{Zwar gilt }\left(a+b\right)^n\not=a^n+b^n\text{, aber: }\left(a*b\right)^n=a^n*b^n$ [/mm]

[mm] $\rmfamily \text{Stefan.}$ [/mm]

Bezug
                                                                
Bezug
Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 23.01.2007
Autor: doopey

Kommt da überhaupt eine Lösung raus? weil die Exponenten und die Basis  unterschiedlich ist. damit komme ich grad garnicht klar!
Bitte um Hilfe,
danke melissa

Bezug
                                                                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Di 23.01.2007
Autor: Herby

Hallo Melissa,

> Kommt da überhaupt eine Lösung raus? weil die Exponenten
> und die Basis  unterschiedlich ist. damit komme ich grad
> garnicht klar!

ja, es kommt eine Lösung raus, nur kann man, wie du schon richtig bemerkt hast, die Basen nicht zusammenfassen.

Es ergibt sich also:

[mm] (r^{3}\*s^{-5})^{0,7}=r^{(3*0,7)}*s^{(-5*0,7)}=r^{2,1}*s^{-3,5}=\bruch{r^{2,1}}{s^{3,5}} [/mm]


Liebe Grüße
Herby

Bezug
                                                                                
Bezug
Potenzen: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Di 23.01.2007
Autor: doopey

danke hehe :)
liebe grüße zurück, melissa..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de