www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Potenzen
Potenzen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 15:50 So 02.03.2008
Autor: mathegenie84

Aufgabe
Vereinfachen Sie und stellen sie alle Schritte ausführlich da:

= ((-1)^2n+1 - [mm] (-1)^2n)^5 [/mm]

Hallo Zusammen

Kann mir vielleicht jemand bei der Aufgabe helfen??? Habe noch nie wirklich etwas mit potenzen gemacht...und weiß nicht weiter.

Gruß


        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 So 02.03.2008
Autor: Karl_Pech

Hallo mathegenie84,


> = ((-1)^2n+1 - [mm](-1)^2n)^5[/mm]


Ich gehe davon aus, daß [mm]n\in\mathbb{N}[/mm]. Jetzt läßt sich folgendes beobachten (*):


[mm](-1)^0 = 1,(-1)^1=-1,(-1)^2=1,(-1)^3 =-1,\dotsc[/mm]


Das heißt für gerade $n= 0, 2, [mm] 4,\dotsc$ [/mm] ist [mm](-1)^n[/mm] immer 1 während es für ungerade [mm]n\![/mm] immer -1 ist. Nun lassen sich gerade Zahlen restlos durch 2 teilen: 0:2 = 0, 2:2 = 1, 4:2 = 2, u.s.w. während bei den ungeraden Zahlen immer 1 als Rest übrigbleibt: 1:2 = 0 Rest 1, 3:2 = 1 Rest 1, 5:2 = 2 Rest 1. Im Umkehrschluß sieht man also, daß man eine gerade Zahl als [mm]2n\![/mm] ausdrücken kann, z.B. 2 = 2*1, 4 = 2*2 und eine ungerade Zahl als [mm]2n+1\![/mm], z.B. 1 = 2*0 + 1, 3 = 2*1 + 1, 5 = 2*2 + 1, u.s.w. . Jetzt schau nochmal zu (*). Das heißt, es gilt: [mm](-1)^{2n+1}=-1[/mm] und [mm](-1)^{2n} = 1[/mm].



Grüße
Karl




Bezug
                
Bezug
Potenzen: Rückfrage 1
Status: (Frage) beantwortet Status 
Datum: 16:34 So 02.03.2008
Autor: mathegenie84

Also laut Lösung sollte ich auf eine Antwort von -32 kommen, aber irgendwie klappt das nicht wirklich

Bezug
                        
Bezug
Potenzen: Fehlt was
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:39 So 02.03.2008
Autor: Infinit

Hallo mathegenie84,
dann musst Du uns aber auch noch irgendwas über die Größe n verraten, sonst kann hierbei nie ein fixer Wert rauskommen.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:51 So 02.03.2008
Autor: mathegenie84

ich weiß nur das n € N ist....und das -32 raus kommen soll

Bezug
                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 So 02.03.2008
Autor: Zneques

Hallo,

Laß uns doch mal sehen wieweit du deine Gleichung mit den Gleichungen $ [mm] (-1)^{2n+1}=-1 [/mm] $ und $ [mm] (-1)^{2n} [/mm] = 1$ von Karl_Pech umstellen kannst.

Du sollst nach n umstellen ? Dein Gleichung ist eigentlich
[mm] -32=((-1)^{2n+1}-(-1)^2n)^5 [/mm] ?
Das solltest du aber nächstes mal gleich mit hinschreiben.

Ciao.

Bezug
                                
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:03 So 02.03.2008
Autor: mathegenie84

-32 ist nur die Lösung, die wir zur Kontrolle vom Lehrer bekommen haben

Bezug
                                        
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:28 So 02.03.2008
Autor: Zneques

-32 ist nur die Lösung für n=1.
Wenn für n aber allgemein [mm] n\in\IN [/mm] gelten soll, so dürfte man für n alle nat. Zahlen einsetzen und würde auch unterschiedliche Ergebnisse bekommen.

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de