www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Potenzen
Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:45 Do 08.10.2009
Autor: michi25

Aufgabe 1
[mm] \bruch{25a^{r}-625a}{75a^{r}} [/mm]

Aufgabe 2
[mm] \bruch{1-k^{2x-1}}{k^{x-1}}+(k^{-x})^{-1} [/mm]

Hallo also ich hab mal wieder Probleme-.-
bei der ersten aufgabe ist meine frage ob ich die [mm] a^{r} [/mm] einfach wegkürzen kann oder ob ich sie mit dem gesetz zu [mm] \bruch{1}{3}*a^{r} [/mm] machen kann
Bei der 2. Aufgabe  hab ich 1 aus weil:
[mm] \bruch{1-k^{2x-1}}{k^{x-1}}+(k^{-x})^{-1} [/mm]
[mm] 1-k^{2x-1-x+1}+k^{x} [/mm]
[mm] 1-k^{x}+k^{x} [/mm]
1
falls was falsch ist bitte verbessern oder tipps geben danke =)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Do 08.10.2009
Autor: schachuzipus

Hallo michi25,

> [mm]\bruch{25a^{r}-625a}{75a^{r}}[/mm]
>  [mm]\bruch{1-k^{2x-1}}{k^{x-1}}+(k^{-x})^{-1}[/mm]
>  Hallo also ich hab mal wieder Probleme-.-
>  bei der ersten aufgabe ist meine frage ob ich die [mm]a^{r}[/mm]
> einfach wegkürzen kann

Eher nicht, du weißt ja: "Aus Summen kürzen nur ..." ;-)

> oder ob ich sie mit dem gesetz zu
> [mm]\bruch{1}{3}*a^{r}[/mm] machen kann

Auch nicht so recht ...

Bedenke, dass du einen Bruch [mm] $\frac{a+b}{c}$ [/mm] schreiben kannst als [mm] $\frac{a}{c}+\frac{b}{c}$ [/mm]

Mache das mal, dann kannst du nach Herzenslust kürzen ...

>  Bei der 2. Aufgabe  hab ich 1 [notok] aus weil:
>  [mm]\bruch{1-k^{2x-1}}{k^{x-1}}+(k^{-x})^{-1}[/mm]
>  [mm]1-k^{2x-1-x+1}+k^{x}[/mm] [notok]

Im Zähler des ersten Bruchs steht eine Summe!!

Da musst du aufpassen!

Zunächst kannst du den Ausgangsterm umschreiben zu [mm] $\frac{1-k^{2x-1}}{k^{x-1}}+k^x$ [/mm]

Dann weißt du, dass man Brüche addiert, indem man sie zuerst gleichnamig macht.

Mache das also mal und du kommst auf ein anderes als dein Ergebnis ..

>  [mm]1-k^{x}+k^{x}[/mm]
>  1
>  falls was falsch ist bitte verbessern oder tipps geben
> danke =)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de