www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Potenzen
Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Korrektur und Tipps (Hilfe)
Status: (Frage) beantwortet Status 
Datum: 18:55 Sa 22.06.2013
Autor: truthanhn

Aufgabe 1
Vereinfache soweit wie möglich, schribe das Ergebnis mit positiven Exponenten

Aufgabe 2
Bestimme die Lösungsmenge

a)
[mm] y^4 [/mm] mal z
----------------------
[mm] z^4 [/mm] mal [mm] (y^2)^2 [/mm]

mein ansatz:
[mm] y^4 [/mm] mal z
----------------   = z^-3 = [mm] 1/z^3 [/mm]
[mm] z^4 [/mm] mal [mm] y^4 [/mm]

b)
[mm] a^k+1 [/mm] mal [mm] a^k-1 [/mm]
---------------------
a^2k

    a^2k
= -------  = 1
    a^2k

c)
                    
12b^-2 mal [mm] 2/b^2 [/mm] + b mal b^-3
                


ich hab b mal b^-3 zu b^-2 gemacht und dann 12b^-2 und b^-2 zu 13b^-2 gemacht, mit positiven expon.

[mm] 1/13b^2 [/mm] - [mm] 2/2b^2 [/mm]

kp wie ich die [mm] 2/2b^2 [/mm] zusammenfassen soll

von d)e)f) hatte ich nicht soviel plan

d)
[mm] (x^3-x)^2 [/mm]

ist das eine bin formel oder kann ich einfach ausmultiplizieren?

e)
(a^-7 mal [mm] b^3 [/mm] mal c^-5) mal (a^-14 mal b^-5 mal [mm] c^2) [/mm]

muss ich jeden faktor mit jedem faktor der anderen klammer oder nur a mit a b mit b usw???

f) (2a^-3 + [mm] 4a^3 [/mm] - 3a^-3) mal [mm] 2a^3 [/mm]

sry gar keine idee


2.

b) [mm] (243-x^5)(x^4+5)=0 [/mm]
c) [mm] (x^2-10x+4)^3 [/mm] = -125

kein idee, hilfe wär gut, danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:23 Sa 22.06.2013
Autor: Thomas_Aut


> Vereinfache soweit wie möglich, schribe das Ergebnis mit
> positiven Exponenten
>  Bestimme die Lösungsmenge
>  a)
>  [mm]y^4[/mm] mal z
>  ----------------------
>  [mm]z^4[/mm] mal [mm](y^2)^2[/mm]

Soll das:

[mm]\frac{y^{4}z}{z^{4}(y^{2})^{2}}[/mm]

bedeuten????

Thomas

>  
> mein ansatz:
>  [mm]y^4[/mm] mal z
>  ----------------   = z^-3 = [mm]1/z^3[/mm]
>  [mm]z^4[/mm] mal [mm]y^4[/mm]
>  
> b)
>  [mm]a^k+1[/mm] mal [mm]a^k-1[/mm]
>  ---------------------
>  a^2k
>  
> a^2k
>  = -------  = 1
> a^2k
>  
> c)
>                      
> 12b^-2 mal [mm]2/b^2[/mm] + b mal b^-3
>                  
>
>
> ich hab b mal b^-3 zu b^-2 gemacht und dann 12b^-2 und b^-2
> zu 13b^-2 gemacht, mit positiven expon.
>
> [mm]1/13b^2[/mm] - [mm]2/2b^2[/mm]
>  
> kp wie ich die [mm]2/2b^2[/mm] zusammenfassen soll
>  
> von d)e)f) hatte ich nicht soviel plan
>  
> d)
>  [mm](x^3-x)^2[/mm]
>
> ist das eine bin formel oder kann ich einfach
> ausmultiplizieren?
>  
> e)
>  (a^-7 mal [mm]b^3[/mm] mal c^-5) mal (a^-14 mal b^-5 mal [mm]c^2)[/mm]
>  
> muss ich jeden faktor mit jedem faktor der anderen klammer
> oder nur a mit a b mit b usw???
>  
> f) (2a^-3 + [mm]4a^3[/mm] - 3a^-3) mal [mm]2a^3[/mm]
>  
> sry gar keine idee
>
>
> 2.
>  
> b) [mm](243-x^5)(x^4+5)=0[/mm]
>  c) [mm](x^2-10x+4)^3[/mm] = -125
>  
> kein idee, hilfe wär gut, danke
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Sa 22.06.2013
Autor: Thomas_Aut

Hallo bitte versuche doch das ganze nochmal halbwegs lesbar aufzuschreiben:

zb:

ad a)

[mm]\frac{y^{4}z}{z^{4}(y^{2})^{2}}[/mm] naja liefert nach kürzen natürlich: [mm]\frac{1}{z^{3}}[/mm]

also ein Resultat mit pos. Exponenten


So nun schreib mal bitte alle anderen Terme in einer Form hin dass man diese auch flüssig lesen kann.

zu 2)

[mm] (243-x^{5})(x^{4}+5) [/mm] =0.

Nun Überlege dir wann dieses Produkt = 0 ist. Natürlich im Falle von

1) [mm] (243-x^{5}) [/mm] = 0 oder
2) [mm] (x^{4}+5) [/mm] = 0

du ersiehst leicht dass [mm] (x^{4}+5) \neq [/mm] 0 [mm] \forall [/mm] x.

also überlege [mm] wann:(243-x^{5}) [/mm] = 0 ist.


Lg

Bezug
                
Bezug
Potenzen: Korrekturfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:13 Sa 22.06.2013
Autor: truthanhn

ok danke,
1b)

[mm] \bruch{a^{k+1}*a^{k-1}}{a^{2k}}=\bruch{a^{2k}}{a^{2k}}=1 [/mm]
c)
[mm] 12b^{-2}-\bruch{2}{b^{2}}+b*b^{-3}=12b^{-2}-\bruch{2}{b^{-2}}+b^{-2}=13b^{-2}-\bruch{2}{b^{-2}}=\bruch{1}{13b^{2}}-\bruch{2}{b^{2}} [/mm] kp wie ich das [mm] \bruch{2}{b^{2}} [/mm] weiter kürz

d)
[mm] (x^{3}-x)^2 [/mm] ist das eine bin formel oder ausmultiplizieren?

e)
[mm] (a^{-7}b^{3}c^{-5})^{2}*(a^{-14}b^{-5}c^{2})^{-1} [/mm]

f)
[mm] (2a^{-3}+4a^{3}-3a^{-3})*2a^{3} [/mm]

2c)
[mm] (x^{2}-10x+4)^{3}=-125 [/mm]




Bezug
                
Bezug
Potenzen: korrektur
Status: (Frage) beantwortet Status 
Datum: 21:23 Sa 22.06.2013
Autor: truthanhn

Aufgabe
1.vereinfache, ergebis in pos. exponenten
2.bestimme die lösungsmenge

ok danke,
1b)

[mm] \bruch{a^{k+1}*a^{k-1}}{a^{2k}}=\bruch{a^{2k}}{a^{2k}}=1 [/mm]
c)
[mm] 12b^{-2}-\bruch{2}{b^{2}}+b*b^{-3}=12b^{-2}-\bruch{2}{b^{-2}}+b^{-2}=13b^{-2}-\bruch{2}{b^{-2}}=\bruch{1}{13b^{2}}-\bruch{2}{b^{2}} [/mm] kp wie ich das [mm] \bruch{2}{b^{2}} [/mm] weiter kürz

d)
[mm] (x^{3}-x)^2 [/mm] ist das eine bin formel oder ausmultiplizieren?

e)
[mm] (a^{-7}b^{3}c^{-5})^{2}*(a^{-14}b^{-5}c^{2})^{-1} [/mm]

f)
[mm] (2a^{-3}+4a^{3}-3a^{-3})*2a^{3} [/mm]

2c)
[mm] (x^{2}-10x+4)^{3}=-125 [/mm]




Bezug
                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Sa 22.06.2013
Autor: Thomas_Aut


> 1.vereinfache, ergebis in pos. exponenten
>  2.bestimme die lösungsmenge
>  ok danke,
>  1b)
>  
> [mm]\bruch{a^{k+1}*a^{k-1}}{a^{2k}}=\bruch{a^{2k}}{a^{2k}}=1[/mm]
>  c)

ok

>  
> [mm]12b^{-2}-\bruch{2}{b^{2}}+b*b^{-3}=12b^{-2}-\bruch{2}{b^{-2}}+b^{-2}=13b^{-2}-\bruch{2}{b^{-2}}=\bruch{1}{13b^{2}}-\bruch{2}{b^{2}}[/mm]
> kp wie ich das [mm]\bruch{2}{b^{2}}[/mm] weiter kürz

was steht denn hier für ein quatsch:
[mm] \bruch{2}{b^{2}}und [/mm] im nächsten Schritt plötzlich... [mm] \bruch{2}{b^{-2}}??????????????????????????????????? [/mm]

>  
> d)
>  [mm](x^{3}-x)^2[/mm] ist das eine bin formel oder
> ausmultiplizieren?
>  

na was denkst du denn?

> e)
>  [mm](a^{-7}b^{3}c^{-5})^{2}*(a^{-14}b^{-5}c^{2})^{-1}[/mm]
>  
> f)
>  [mm](2a^{-3}+4a^{3}-3a^{-3})*2a^{3}[/mm]
>  
> 2c)
>  [mm](x^{2}-10x+4)^{3}=-125[/mm]
>  
>
>  

löse mal die ersten dann kommen wir zu den weiteren.

mfg

Bezug
                                
Bezug
Potenzen: aufgaben
Status: (Frage) beantwortet Status 
Datum: 21:58 Sa 22.06.2013
Autor: truthanhn


>  
> was steht denn hier für ein quatsch:
> [mm]\bruch{2}{b^{2}}und[/mm] im nächsten Schritt plötzlich...
> [mm]\bruch{2}{b^{-2}}???????????????????????????????????[/mm]

sry meinte [mm] \bruch{2}{b^{2}} [/mm]


> > d)
>  >  [mm](x^{3}-x)^2[/mm] ist das eine bin formel oder
> > ausmultiplizieren?
>  >  
> na was denkst du denn?

ich würde sagen ausmultiplizieren
also [mm] x^{6}-x^{2} [/mm]


e)

>  >  [mm](a^{-7}b^{3}c^{-5})^{2}*(a^{-14}b^{-5}c^{2})^{-1}[/mm]

[mm] =(a^{-14}b^{6}c{-10})*(a^{14}b^{5}c^{-2}) [/mm]
[mm] =b^{11}c^{-12} [/mm] bin mir nicht sicher




f)

>  >  [mm](2a^{-3}+4a^{3}-3a^{-3})*2a^{3}[/mm]

[mm] =4a+8a^{3}-6a=-2a+8a^{3} [/mm] ist das so richtig?


> > 2c)
>  >  [mm](x^{2}-10x+4)^{3}=-125[/mm]

[mm] =x^{2}-10x+4=-5 [/mm]
[mm] =x^{2}-10x=-9 [/mm]
also widerspruch




Bezug
                                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 Sa 22.06.2013
Autor: Thomas_Aut


> >  

> > was steht denn hier für ein quatsch:
> > [mm]\bruch{2}{b^{2}}und[/mm] im nächsten Schritt plötzlich...
> > [mm]\bruch{2}{b^{-2}}???????????????????????????????????[/mm]
> sry meinte [mm]\bruch{2}{b^{2}}[/mm]

ok ja da musst du bisschen aufpassen mit der Notation.

na dann rechne einfach: Erg = [mm] 11b^{-2} [/mm]

>  
>
> > > d)
>  >  >  [mm](x^{3}-x)^2[/mm] ist das eine bin formel oder
> > > ausmultiplizieren?
>  >  >  
> > na was denkst du denn?
>  ich würde sagen ausmultiplizieren
>  also [mm]x^{6}-x^{2}[/mm]

nein hier musst du die binomische Formel verwenden.

>  
>
> e)
>  >  >  [mm](a^{-7}b^{3}c^{-5})^{2}*(a^{-14}b^{-5}c^{2})^{-1}[/mm]
>  
> [mm]=(a^{-14}b^{6}c{-10})*(a^{14}b^{5}c^{-2})[/mm]
>  [mm]=b^{11}c^{-12}[/mm] bin mir nicht sicher

>  
>
>
>
> f)
>  >  >  [mm](2a^{-3}+4a^{3}-3a^{-3})*2a^{3}[/mm]
>  
> [mm]=4a+8a^{3}-6a=-2a+8a^{3}[/mm] ist das so richtig?

nein wie denn auch... überlege doch mal:

1 Komponente: überlege mal abgesehen von den Konstanten [mm] a^{-3}*a^{3} [/mm] = [mm] \frac{a^{3}}{a^{3}} [/mm] = 1!!!!
also schon da ein Fehler drinnen.

>  
>
> > > 2c)
>  >  >  [mm](x^{2}-10x+4)^{3}=-125[/mm]
>  
> [mm]=x^{2}-10x+4=-5[/mm]
>  [mm]=x^{2}-10x=-9[/mm]
>  also widerspruch
>  

Denk mal nach: für x = 1... steht dann -9 = -9.... klingt sehr stark nach einer wahren Aussage ;)
und ganz allg.
Wieso versuchst du nicht diese quadratische Gleichung per Formel zu lösen??

Darf ich mal nachfragen in welcher Schulstufe du bist?

mfg THomas

>
>  


Bezug
                                                
Bezug
Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:22 So 23.06.2013
Autor: truthanhn


> na dann rechne einfach: Erg = [mm]11b^{-2}[/mm]

ok hab ich jz auch raus, danke







> >  

> >
> > > > d)
>  >  >  >  [mm](x^{3}-x)^2[/mm] ist das eine bin formel oder
> > > > ausmultiplizieren?
>  >  >  >  
> > > na was denkst du denn?
>  >  ich würde sagen ausmultiplizieren
>  >  also [mm]x^{6}-x^{2}[/mm]
>  
> nein hier musst du die binomische Formel verwenden.
>

ok [mm] x^{6}-2x^{6}-x^{2}, [/mm] kannst du bitte korriegieren  



> >  

> >
> > e)
>  >  >  >  
> [mm](a^{-7}b^{3}c^{-5})^{2}*(a^{-14}b^{-5}c^{2})^{-1}[/mm]
>  >  
> > [mm]=(a^{-14}b^{6}c{-10})*(a^{14}b^{5}c^{-2})[/mm]
>  >  [mm]=b^{11}c^{-12}[/mm] bin mir nicht sicher
>  
> >  

> >
> >

war das richtig? oder hab ich das mit a vergessen,

> >
> > f)
>  >  >  >  [mm](2a^{-3}+4a^{3}-3a^{-3})*2a^{3}[/mm]
>  >  
> > [mm]=4a+8a^{3}-6a=-2a+8a^{3}[/mm] ist das so richtig?
>  nein wie denn auch... überlege doch mal:
>  
> 1 Komponente: überlege mal abgesehen von den Konstanten
> [mm]a^{-3}*a^{3}[/mm] = [mm]\frac{a^{3}}{a^{3}}[/mm] = 1!!!!
>   also schon da ein Fehler drinnen.
>  >  


sry ich kapier das nicht, erklärung mit lösungsweg?



> >
> > > > 2c)
>  >  >  >  [mm](x^{2}-10x+4)^{3}=-125[/mm]
>  >  
> > [mm]=x^{2}-10x+4=-5[/mm]
>  >  [mm]=x^{2}-10x=-9[/mm]
>  >  also widerspruch
>  >  
> Denk mal nach: für x = 1... steht dann -9 = -9.... klingt
> sehr stark nach einer wahren Aussage ;)
> und ganz allg.
> Wieso versuchst du nicht diese quadratische Gleichung per
> Formel zu lösen??
>  

kenn ich nicht, aber das war doch auch richtig oder?

> Darf ich mal nachfragen in welcher Schulstufe du bist?
>


9 aber wir machen das erst seit kurzem, kannst du die falschen aufgaben bitte erklären mit für mich nachvollziehbarem lösungsweg? danke!




Bezug
                                                        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 So 23.06.2013
Autor: Thomas_Aut


> > na dann rechne einfach: Erg = [mm]11b^{-2}[/mm]
>
> ok hab ich jz auch raus, danke
>  
>
>
>
>
>
>
> > >  

> > >
> > > > > d)
>  >  >  >  >  [mm](x^{3}-x)^2[/mm] ist das eine bin formel oder
> > > > > ausmultiplizieren?
>  >  >  >  >  
> > > > na was denkst du denn?
>  >  >  ich würde sagen ausmultiplizieren
>  >  >  also [mm]x^{6}-x^{2}[/mm]
>  >  
> > nein hier musst du die binomische Formel verwenden.
>  >

>
> ok [mm]x^{6}-2x^{6}-x^{2},[/mm] kannst du bitte korriegieren  

Puh da ist so gut wie alles falsch.

Also berechnen willst du: [mm] (x^3-x)^{2} [/mm] also löst du mit binomischer Formel auf zu: [mm]\red{x^{6}-2x^{4}+x^{2}}[/mm]

Schlage diese elementaren Rechenregeln nochmals nach!!




>
>
>
> > >  

> > >
> > > e)
>  >  >  >  >  
> > [mm](a^{-7}b^{3}c^{-5})^{2}*(a^{-14}b^{-5}c^{2})^{-1}[/mm]
>  >  >  
> > > [mm]=(a^{-14}b^{6}c{-10})*(a^{14}b^{5}c^{-2})[/mm]
>  >  >  [mm]=b^{11}c^{-12}[/mm] bin mir nicht sicher
>  >  
> > >  

> > >
> > >
>
> war das richtig? oder hab ich das mit a vergessen,
>  

Stimmt.

> > >
> > > f)
>  >  >  >  >  [mm](2a^{-3}+4a^{3}-3a^{-3})*2a^{3}[/mm]
>  >  >  
> > > [mm]=4a+8a^{3}-6a=-2a+8a^{3}[/mm] ist das so richtig?
>  >  nein wie denn auch... überlege doch mal:
>  >  
> > 1 Komponente: überlege mal abgesehen von den Konstanten
> > [mm]a^{-3}*a^{3}[/mm] = [mm]\frac{a^{3}}{a^{3}}[/mm] = 1!!!!
>  >   also schon da ein Fehler drinnen.
>  >  >  
>
>
> sry ich kapier das nicht, erklärung mit lösungsweg?
>  

Wie kann das sein?? Ähnliche Regeln verwendest du doch im Bsp oben. und ich hoffe dass dir [mm]\red{\frac{x}{x}=1}[/mm] klar ist??? Insofern natürlich:
[mm] \red{\frac{a^{3}}{a^{3}}=1} [/mm]
Und diese Regel ist die einzige die du hier verwenden musst aja hinzu kommt noch: [mm] \red{a^{3}a^{3} = a^{6}} [/mm]

>
>
> > >
> > > > > 2c)
>  >  >  >  >  [mm](x^{2}-10x+4)^{3}=-125[/mm]
>  >  >  
> > > [mm]=x^{2}-10x+4=-5[/mm]
>  >  >  [mm]=x^{2}-10x=-9[/mm]
>  >  >  also widerspruch
>  >  >  
> > Denk mal nach: für x = 1... steht dann -9 = -9.... klingt
> > sehr stark nach einer wahren Aussage ;)
> > und ganz allg.
> > Wieso versuchst du nicht diese quadratische Gleichung per
> > Formel zu lösen??
>  >  
>
> kenn ich nicht, aber das war doch auch richtig oder?

Nein das war totaler Unsinn!! Hab ich doch oben schon geschrieben: für x = 1 ist die Gleichheit erfüllt also kann das kein Widerspruch für alle x sein!!!!
Du sollst doch für diese Gleichung die Lösungsmenge bestimmen. Also bestimme die Menge aller x für welche diese Gleichung erfüllt ist.


>  
> > Darf ich mal nachfragen in welcher Schulstufe du bist?
> >
>
>
> 9 aber wir machen das erst seit kurzem, kannst du die
> falschen aufgaben bitte erklären mit für mich
> nachvollziehbarem lösungsweg? danke!

Versuche ich aber du musst natürlich mitdenken ;)


Thomas

>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de