www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Potenzen
Potenzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:32 Mo 23.12.2013
Autor: headbanger

Aufgabe
<br>
Für welche natürlichen Zahlen a und n lässt sich[mm]a ^ (^-^n^)[/mm] als abbrechender dezimalbruch schreiben?


<br>
guten weihnachtlichen vorabend liebe mathematiker,

ich hab zwar ehrlich gesagt nicht viel ahnung was ein abbrechender dezimalbruch ist =) aber meine überlegungen sind folgendermaßén:

1)

[mm] \IN[/mm]={1,2,3...} alle positiven ganzen zahlen ausser 0

also darf a als Basis nicht Null sein =)
[mm]a \neq 0[/mm]
aber null ist ja keine natürliche zahl laut definition... - hier also mein erster gedanklicher stolperstein

2)

für n ist egal welche Zahl man einsetzt weil [mm]a ^0[/mm]= 1 --> alle anderen natürlichen zahlen sind definiert

gehe ich in meinen annahmen richtig? kann mir jemand bitte helfen das mathematisch korrekt zu hinterfragen und zu beschreiben?

vielen dank im voraus & fröhliche weihnacht
 

        
Bezug
Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:25 Di 24.12.2013
Autor: DieAcht

Hallo,


> <br>
>  Für welche natürlichen Zahlen a und n lässt sich[mm]a ^ (^-^n^)[/mm]
> als abbrechender dezimalbruch schreiben?
>  
> <br>
>  guten weihnachtlichen vorabend liebe mathematiker,
>  
> ich hab zwar ehrlich gesagt nicht viel ahnung was ein
> abbrechender dezimalbruch ist =) aber meine überlegungen
> sind folgendermaßén:
>  
> 1)
>  
> [mm]\IN[/mm]={1,2,3...} alle positiven ganzen zahlen ausser 0
>  
> also darf a als Basis nicht Null sein =)
>  [mm]a \neq 0[/mm]
>  aber null ist ja keine natürliche zahl laut
> definition... - hier also mein erster gedanklicher
> stolperstein
>  
> 2)
>  
> für n ist egal welche Zahl man einsetzt weil [mm]a ^0[/mm]= 1 -->
> alle anderen natürlichen zahlen sind definiert
>  
> gehe ich in meinen annahmen richtig? kann mir jemand bitte
> helfen das mathematisch korrekt zu hinterfragen und zu
> beschreiben?
>  
> vielen dank im voraus & fröhliche weihnacht
>   

Für mich gilt:

      [mm] \IN_0:=\{0,1,\ldots\} [/mm]
      [mm] \IN:=\{1,2,\ldots\} [/mm]

Meinst du folgendes ?

      [mm] a^{-n}=\frac{1}{a^n} [/mm]

Hier muss natürlich [mm] a^n\not=0 [/mm] gelten mit:

      [mm] n\in\IN_0 [/mm] und [mm] a\in\IN [/mm]

Ausnahme: $a=0$ und $n=0$ geht auch, denn [mm] 0^0:=1. [/mm]


Kommen wir nun zu den Dezimalzahlen:

Betrachte [mm] \IQ:=\{\frac{p}{q}|p\in\IZ\land q\in\IZ_{\not=0}\} [/mm]

Es gibt abbrechende (endliche), reinperiodische und gemischtperiodische Dezimalzahlen. Hier geht es um die abbrechende endliche Dezimalzahlen. Diese sind von der Form [mm] \frac{p}{10^S}, [/mm] wobei $S$ die Stellenzahl hinter dem Komma ist. Du probierst also deinen Bruch auf diese Form zu bringen. Das geht natürlich nur, wenn der Nenner Teiler einer Zehnerpotenz [mm] 10^S [/mm] ist. In anderen Worten: Die Primfaktorzerlegung des Nenners darf nur die Primfaktoren $2$ und $5$ enthalten.

Tipp: Mit Google solltest du genug dazu finden.

Frohes Fest!
DieAcht


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de