www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - Potenzgesetz beweisen
Potenzgesetz beweisen < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzgesetz beweisen: Lösung richtig?
Status: (Frage) beantwortet Status 
Datum: 00:01 So 25.01.2009
Autor: ohmeinkreuz

Aufgabe
Zeige für alle: [mm] k,m,n,\in \IN [/mm] gilt [mm] (k^m)^n [/mm] = [mm] k^m^*^n [/mm]

Hallo! :)

Ich habe das Potenzgesetz folgendermaßen bewiesen:

[mm] (k^m)^n=\underbrace{k*k*k*...*k*k*k}_{m-mal}=k^m^*^n [/mm]
(unter der "Unterklammer" muss eigentlich noch eine sein die aussagt, dass das ganze n-mal genommen wird, aber das bekomm ich irgendwie nicht hin)

Man nimmt k n-mal m-mal mit sich selbst mal.

Reicht das als Beweis schon aus? Im Skript wurde das 1. Potenzgesetz per voll.Indu. bewiesen und das 3. in der Form wie ich es jetzt gemacht habe. Könnte ich es auch per voll. Indu. beweisen? Wirklich weit bin ich damit nämlich nicht gekommen.

Danke schonmal!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzgesetz beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 So 25.01.2009
Autor: schachuzipus

Hallo ohmeinkreuz,

> Zeige für alle: [mm]k,m,n,\in \IN[/mm] gilt [mm](k^m)^n[/mm] = [mm]k^m^*^n[/mm]
>  Hallo! :)
>  
> Ich habe das Potenzgesetz folgendermaßen bewiesen:
>  
> [mm](k^m)^n=\underbrace{k*k*k*...*k*k*k}_{m-mal}=k^m^*^n[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  (unter der "Unterklammer" muss eigentlich noch eine sein
> die aussagt, dass das ganze n-mal genommen wird, aber das
> bekomm ich irgendwie nicht hin)
>  
> Man nimmt k n-mal m-mal mit sich selbst mal.
>  
> Reicht das als Beweis schon aus? Im Skript wurde das 1.
> Potenzgesetz per voll.Indu. bewiesen und das 3. in der Form
> wie ich es jetzt gemacht habe. Könnte ich es auch per voll.
> Indu. beweisen? Wirklich weit bin ich damit nämlich nicht
> gekommen.

Wenn du mit dem 1.Potenzgesetz das Gesetz $k^m\cdot{}k^n=k^{m+n}$ meinst, dann ja.

Das benötigst du im Induktionsschritt

Du nimmst dir m beliebig, aber fest und machst die Induktion über n

Der IA für n=1 (oder n=0) ist klar, oder?

Im Induktionsschritt $n\to n+1$ nimm in der Induktionsvoraussetzung an, dass für ein beliebiges, aber festes n\in\IN gilt $\red{\left(k^m\right)^n=k^{m\cdot{}n}$

Dann ist zu zeigen, dass $\left(k^m\right)^{n+1}=k^{m(n+1)}$ ist

Dann mal los: $\left(k^m\right)^{n+1}=\red{\left(k^m\right)^{n}}\cdot{}\left(k^m\right)^{1}$ nach dem 1.Potenzgesetz

$=\red{k^{m\cdot{}n}}\cdot{}k^m$ nach IV und IA $\left(k^m\right)^1=k^{m\cdot{}1}=k^m$

Nun nochmal das 1.Potenzgesetz anwenden und du bist fast am Ziel ...

>  
> Danke schonmal!
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
                
Bezug
Potenzgesetz beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:25 So 25.01.2009
Autor: ohmeinkreuz

Ich hoffe ich habs verstanden! Mir scheint so. ;)

Ich habs mal so aufgeschrieben wie ichs aus der Uni kenn.

Für alle [mm] n\in\IN [/mm] sei p(n) [mm] ((k^m)^n=k^m^*^n \forall k,m,\in\IN) [/mm]

IA: Die Aussage ist für p(1) wahr
[mm] (k^m)^1=k^m^*^1 [/mm]
[mm] k^m=k^m [/mm]

IV: Angenommen, es gilt p(n) für ein beliebiges [mm] n\in\IN [/mm]

IS: z.zg: [mm] (k^m)^n^+^1= k^m^{(n+1)} [/mm]

[mm] (k^m)^n^+^1=(k^m)^n*(k^m)^1= [/mm] (nach IV und IA) [mm] k^m^*^n*k^m=k^m^{(n+1)} [/mm]

Stimmt das so??

Bezug
                        
Bezug
Potenzgesetz beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:32 So 25.01.2009
Autor: schachuzipus

Hallo nochmal,

> Ich hoffe ich habs verstanden! Mir scheint so. ;)
>
> Ich habs mal so aufgeschrieben wie ichs aus der Uni kenn.
>  
> Für alle [mm]n\in\IN[/mm] sei p(n) [mm]((k^m)^n=k^m^*^n \forall k,m,\in\IN)[/mm]
>  
> IA: Die Aussage ist für p(1) wahr
>  [mm](k^m)^1=k^m^*^1[/mm]
>  [mm]k^m=k^m[/mm]
>  
> IV: Angenommen, es gilt p(n) für ein beliebiges [mm]n\in\IN[/mm]
>  
> IS: z.zg: [mm](k^m)^n^+^1= k^m^{(n+1)}[/mm]
>  
> [mm](k^m)^n^+^1=(k^m)^n*(k^m)^1=[/mm] (nach IV und IA)
> [mm]k^m^*^n*k^m=k^m^{(n+1)}[/mm]
>  
> Stimmt das so??  

Ja, das ist so in Ordnung, spendiere noch die ein oder andere Begründung (zB. da, wo du das Gesetz [mm] $a^{r}\cdot{}a^s=a^{r+s}$ [/mm] verwendest.

Und bei der letzten und entscheidenden Umformung würde ich mind. einen Zwischenschritt machen ;-)

Gerade, wenn es eine Übungsaufgabe ist; das sehen die immer gerne ...

LG

schachuzipus


Bezug
                                
Bezug
Potenzgesetz beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:45 So 25.01.2009
Autor: ohmeinkreuz


> Ja, das ist so in Ordnung, spendiere noch die ein oder
> andere Begründung (zB. da, wo du das Gesetz
> [mm]a^{r}\cdot{}a^s=a^{r+s}[/mm] verwendest.

Hab ich gemacht, wäre aber quatsch jetzt hier zu zeigen, da ich mich aufs Skript beziehe.

>  
> Und bei der letzten und entscheidenden Umformung würde ich
> mind. einen Zwischenschritt machen ;-)

MINDESTENS??? Oje...

>  
> Gerade, wenn es eine Übungsaufgabe ist; das sehen die immer
> gerne ...

Ich glaub eher, die sehn uns gerne bluten!!! Man schau nur mal auf die Uhr! ;)

> LG
>  
> schachuzipus
>  


Bezug
                                        
Bezug
Potenzgesetz beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:02 So 25.01.2009
Autor: ohmeinkreuz

Ich komm nicht mal auf EINEN Zwischenschritt!

Wir haben folgende Def.

[mm] n^m^+^1 [/mm] := [mm] n^m*n \forall n,m\in\IN [/mm]

die würde ich zum Schluß anwenden.




Ich fall jetzt totmüde ins Bett. Morgen gehts weiter...


Bezug
                                                
Bezug
Potenzgesetz beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:09 So 25.01.2009
Autor: schachuzipus

Hallo nochmal,

ich meinte dies:

Im letzten Umformungsscshritt: [mm] $k^m^\cdot{}^n\cdot{}k^m=k^m^{(n+1)}$ [/mm] würde ich dazwischenquetschen:

[mm] $k^m^\cdot{}^n\cdot{}k^m\red{=k^{m\cdot{}n+m}}=k^m^{(n+1)}$ [/mm]

Aber das musst du natürlich nicht ;-)

War nur ein Sicherheitstipp ,-)

[gutenacht]

schachuzipus

Bezug
                                                        
Bezug
Potenzgesetz beweisen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:53 So 25.01.2009
Autor: ohmeinkreuz

Ah! Ok.

Ich habe auf alle Fälle, und das ist schon mal ziemlich toll(!), die Schritte verstanden und kann alles nachvollziehen. Dafür DANKE!
Ich frage mich nur wie ich in der Klausur auf das alles von alleine, ohne Skript, kommen soll???

Viele Grüße - ohmeinkreuz (tut schon gar icht mehr so sehr weh ;-) )

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de