www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Potenzgesetze
Potenzgesetze < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzgesetze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 So 03.10.2004
Autor: DerMathematiker

Hallo Ihr,

ich komme mich zwar ganz schön blöd vor, wenn ich das frage, aber bei den Potenzgesetzen....
ich habe zum Beispiel folgende Aufgabe:

[mm] \bruch{x^{4}}{y^{n-1}} [/mm] + [mm] x^{n} [/mm] + [mm] y^{-n} [/mm] = ?

wie kann ich das nun weiter machen...verstößt es gegen die Regel, wenn ich nun mit [mm] y^{n-1} [/mm] multiplizieren würde? Oder was kann man bei den Potenzaufgaben machen und was nicht. Weil ich komme mich sau doof vor, denn ich habe mal für x, y und n Werte eingesetzt und komme bei meinen Rechnungen nicht mehr auf das selbe Ergebniss. Also die Potenzgesetze sind schon klar, aber wie gehe ich mit Aufgaben um eines solchen Types?

Was steht hinter dem Gleichheitszeichen? Also ich glaube, dass darin mein Fehler liegt.

Also wäre froh, wenn jemand auf die lächerliche Frage eine Antwort geben könnte.

MfG euer Mathematiker


        
Bezug
Potenzgesetze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 So 03.10.2004
Autor: DerMathematiker

So..hätte gerne ausführliche Lösung zu folgender Aufgabe:

[mm] \bruch{2a+1}{a^{2}b + ab^{2}} [/mm] + [mm] \bruch{2a-1}{a^{2}b - ab^{2}} [/mm] - [mm] \bruch{4ab^{-1}}{a^{2}-b^{2}} [/mm]

Hätte gerne ne Lösung Schritt für Schritt....also nochmals...die Potenzregeln sind mir voll bekannt...es hängt jedoch an diesen zusammengesetzten Aufgaben.

Bezug
                
Bezug
Potenzgesetze: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 So 03.10.2004
Autor: Paulus

Hallo derMathematiker

> So..hätte gerne ausführliche Lösung zu folgender Aufgabe:
>  
> [mm]\bruch{2a+1}{a^{2}b + ab^{2}}[/mm] + [mm]\bruch{2a-1}{a^{2}b - ab^{2}}[/mm]
> - [mm]\bruch{4ab^{-1}}{a^{2}-b^{2}} [/mm]
>  
> Hätte gerne ne Lösung Schritt für Schritt....also
> nochmals...die Potenzregeln sind mir voll bekannt...es
> hängt jedoch an diesen zusammengesetzten Aufgaben.
>  


Da du die Ueberschrift "Potenzrechnen" in deiner Frage hast, nehme ich an, du willst das nicht mit Bruchrechnen, sondern eben mit den Potenzen durchrechnen.

Ich rechne einfach mal durch, ohne viel Erklärunugen, da ich dein Niveau ganz gut kenne und ich weiss, dass du das schon nachvollziehen kannst! ;-)

Solltest du dann aber doch noch Fragen haben, dann stelle diese einfach, ja?

[mm] $\bruch{2a+1}{a^{2}b+ab^{2}}+\bruch{2a-1}{a^{2}b-ab^{2}}-\bruch{4ab^{-1}}{a^{2}-b^{2}}$ [/mm]

[mm] $\bruch{2a+1}{ab(a+b)}+\bruch{2a-1}{ab(a-b)}-\bruch{4ab^{-1}}{(a+b)(a-b)}$ [/mm]

Jetzt in Potenzschreibweise:

[mm] $(2a+1)a^{-1}b^{-1}(a+b)^{-1}+(2a-1)a^{-1}b^{-1}(a-b)^{-1}-4ab^{-1}(a+b)^{-1}(a-b)^{-1}$ [/mm]

[mm] $b^{-1}((2a+1)a^{-1}(a+b)^{-1}+(2a-1)a^{-1}(a-b)^{-1}-4a(a+b)^{-1}(a-b)^{-1})$ [/mm]

Und jetzt erweitern:

[mm] $b^{-1}((2a+1)(a-b)a^{-1}(a+b)^{-1}(a-b)^{-1}+(2a-1)(a+b)a^{-1}(a+b)^{-1}(a-b)^{-1}-4a^{2}a^{-1}(a+b)^{-1}(a-b)^{-1})$ [/mm]

Ausklammern:

[mm] $a^{-1}b^{-1}(a+b)^{-1}(a-b)^{-1}((2a+1)(a-b)+(2a-1)(a+b)-4a^{2})$ [/mm]

[mm] $a^{-1}b^{-1}(a+b)^{-1}(a-b)^{-1}(2a^{2}-2ab+a-b+2a^{2}+2ab-a-b-4a^{2})$ [/mm]

[mm] $a^{-1}b^{-1}(a+b)^{-1}(a-b)^{-1}(-2b)$ [/mm]

[mm] $-2ba^{-1}b^{-1}(a+b)^{-1}(a-b)^{-1}$ [/mm]

[mm] $-2a^{-1}(a+b)^{-1}(a-b)^{-1}$ [/mm]

[mm] $\bruch{-2}{a(a^{2}-b^{2})}$ [/mm]


Sofern ich mich nirgends verrechnet habe ;-)

Mit lieben Grüssen

Paul

Bezug
        
Bezug
Potenzgesetze: Antwort
Status: (Antwort) fertig Status 
Datum: 10:57 So 03.10.2004
Autor: Emily


> Hallo Ihr,

Hallo Mathematiker,


> ich komme mich zwar ganz schön blöd vor, wenn ich das
> frage, aber bei den Potenzgesetzen....

blöd gibts nicht

>  ich habe zum Beispiel folgende Aufgabe:
>  
> [mm]\bruch{x^{4}}{y^{n-1}}[/mm] + [mm]x^{n}[/mm] + [mm]y^{-n}[/mm] = ?
>  

>wie kann ich das nun weiter machen...verstößt es gegen die

> Regel, wenn ich nun mit [mm]y^{n-1}[/mm] multiplizieren würde?

ja, du hast ja keine Gleichung. Du kannst aber erweitern.

[mm]\bruch{x^{4}}{y^{n-1}}+x^{n}+y^{-n} =\bruch{x^4+x^n*y^{n-1}+y^{-n}y^{n-1}}{y^{n-1}[/mm]

>  
>  

  

> Also wäre froh, wenn jemand auf die Frage eine
> Antwort geben könnte.
>  
> MfG euer Mathematiker
>  
>  


Liebe Grüße


Emily

Bezug
                
Bezug
Potenzgesetze: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:10 So 03.10.2004
Autor: DerMathematiker

Also wenn ich jetzt hätte

[mm] \bruch{a}{b} [/mm] + [mm] \bruch{c}{d} [/mm] + [mm] \bruch{e}{f} [/mm] wäre dann also

[mm] \bruch{adf + cbf + edb}{bdf} [/mm]

Wäre das nun so richtig???

Bezug
                        
Bezug
Potenzgesetze: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 So 03.10.2004
Autor: Josef

Hallo Der Mathematiker,

> Also wenn ich jetzt hätte
>  
> [mm]\bruch{a}{b}[/mm] + [mm]\bruch{c}{d}[/mm] + [mm]\bruch{e}{f}[/mm] wäre dann also
>  
> [mm]\bruch{adf + cbf + edb}{bdf} [/mm]
>  
> Wäre das nun so richtig???
>  

Ja, das Ergebnis ist richtig.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de