www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Potenzmenge
Potenzmenge < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 So 17.09.2006
Autor: JannisCel

Aufgabe
Beweise das die Potenzmenge aus [mm] 2^{n} [/mm] Elementen besteht.  

Folgender Beweis wurde mir vorgestellt, den ich allerdings nicht verstanden habe.

Sei [mm] \Omega={a_{1},...,a_{n}} [/mm]

Jede Teilmenge von [mm] \Omega [/mm] lässt sich eindeutig als Dualzahl schreiben. Dabei bedeute 1 an der i-ten Stelle das [mm] a_{i} \in [/mm] A und eine 0 das [mm] a_{i} [/mm] kein Element von A ist.

Jetzt kommt der Teil den ich nicht verstehe.

Diese Dualzahlen sind die ganzen Zahlen von 0 bis zu einer größten Zahl N, die als Duahlzahl an jeder der n Stellen eine 1 stehen hat, also N=1111...1.  Da sich die [mm] \IN [/mm] selber abzählen, sind dies N+1 Zahlen. N+1 lässt sich als 100...0 schreiben (Warum?). Das ist aber die natürlich Zahl [mm] 2^{n} [/mm] (Den Schluss verstehe ich auch nicht). Somit gibt es [mm] 2^{n} [/mm] Teilmengen von [mm] \omega [/mm] (kapier ich auch nicht).

Damit ist 0 als Repräsentat der  [mm] \emptyset [/mm] gemeint und N=1111...1 als [mm] \omega. [/mm] Das sind N+1 Zahlen. Ok.

Ich denke, ein möglicher Beweis wäre, dass ich sage, aus einer n elementigen Menge kann ich in der Anzahl [mm] \summe_{i=1}^{n}=\bruch{n!}{k!(n-k)!} [/mm] verschiedene Mengen erzeugen. Und die Summe ist gerade, beweisbar durch Induktion, [mm] 2^{n}. [/mm]

Ist mein Beweis so ok? und wie funktionieren die obenstehenden Schlüsse. Den Trick würde ich gern verstehen.

        
Bezug
Potenzmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 So 17.09.2006
Autor: Palin

Du stelst die Zahl hier im Dualsistem da  010 ist zb = 2 und 3 ist 011;
wenn du jetzt zu 3, 1 addierst fängst du hinten an steht dort eine 1 wird die zur 0 und du gehst ein weiter usw.

also ist 4 = 100

um nun den Werd der dezimal Zahl zu bestimmen kannst du von hinten die stelle zählen an der die 1 steht. Wenn du nun 1 von der Zahl abziest entsprichtes dem n mit welchem 2 hochgenommen werden muss um den Wert an der Stelle zu bestimmen.

Bei 4 => 1 an 3. Stelle von hinten => [mm] 2^2 [/mm]

Wenn du nun eine Zahl hast mit n Stellen die alle 1 sind du 1 draufrechnest werden die 1er alle zur 0 und du hast an der Stelle n+1 eine 1 was im Dezimalsystem wider der Zahl [mm] 2^n [/mm] entspricht.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de