www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Potenzreihe
Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:49 So 28.05.2006
Autor: melek

Aufgabe
Wir betrachten die Potenzreeihe f(z)= Summe von n=0 bis unendlich über c z hoch n mit reellen oder komplexen Koeffizienten c und Konvergenzradius R. Zeige R=(lim sup n-te Wurzel vom betrag von c) hoch -1.

Ich habe echt keine Ahnung, wie ich vorangehen soll. man solle wohl das Wurzelkriterium mithilfe des Limes superior formulieren und damit vorangehen? ich weiß echt nicht.

danke...

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 So 28.05.2006
Autor: felixf

Hallo melek!

> Wir betrachten die Potenzreeihe f(z)= Summe von n=0 bis
> unendlich über c z hoch n mit reellen oder komplexen
> Koeffizienten c und Konvergenzradius R. Zeige R=(lim sup
> n-te Wurzel vom betrag von c) hoch -1.

Mal anders (lesbarer) aufgeschrieben: Wir betrachten die Potenzreeihe $f(z) = [mm] \sum_{n=0}^\infty c_n z^n$ [/mm] mit reellen oder komplexen Koeffizienten [mm] $c_n$ [/mm] und Konvergenzradius $R$. Zeige $R = [mm] \left( \limsup_{n\to\infty} \sqrt[n]{|c_n|} \right)^{-1}$. [/mm]

>  Ich habe echt keine Ahnung, wie ich vorangehen soll. man
> solle wohl das Wurzelkriterium mithilfe des Limes superior
> formulieren und damit vorangehen? ich weiß echt nicht.

Ja, das Wurzelkriterium ist hier gefragt. Sei [mm] $\tilde{R} [/mm] := [mm] \left( \limsup_{n\to\infty} \sqrt[n]{|c_n|} \right)^{-1}$. [/mm] Du musst zeigen:
(a) Ist $|z| > [mm] \tilde{R}$, [/mm] so divergiert [mm] $\sum_{n=0}^\infty c_n z^n$. [/mm]
(b) Ist $|z| < [mm] \tilde{R}$, [/mm] so konvergiert [mm] $\sum_{n=0}^\infty c_n z^n$ [/mm] absolut.

Schauen wir doch mal den ersten Fall an. Bei der Reihe [mm] $\sum_{n=0}^\infty c_n z^n$ [/mm] ist [mm] $\sqrt[n]{|c_n z^n|} [/mm] = [mm] \sqrt[n]{|c_n|} \cdot [/mm] |z|$. Fuer das Wurzelkriterium muesste man jetzt zeigen, dass der [mm] $\limsup$ [/mm] davon $< 1$ ist. Aber das kannst du gerade mit $|z| < R$ erreichen.

Und im zweiten Fall gehts genauso, hier benutzt du die Divergenzaussage des Wurzelkriteriums.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de