www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Potenzreihe
Potenzreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Entwicklung
Status: (Frage) beantwortet Status 
Datum: 22:22 So 13.07.2008
Autor: Pacapear

Hallo zusammen!



Ich habe ein großes Problem mit der Entwicklung in Potenzreihen. Jetzt habe ich hier in meinem Buch (Fischer/Lieb - Einführung in die Funktionentheorie) ein Beispiel zur Entwicklung der Funktion [mm] \bruch{1}{\xi-z}, [/mm] was ich aber nicht wirklich nachvollziehen kann. Ich schreib es hier erstmal komplett hin:



>>
Wir entwickleln den Cauchy-Kern [mm] \bruch{1}{\xi-z} [/mm] in eine geometrische Reihe nach Potenzen von [mm] \bruch{z-z_0}{\xi-z_0}: [/mm]
[mm] \bruch{1}{\xi-z}=\bruch{1}{1-\bruch{z-z_0}{\xi-z_0}}*\bruch{1}{\xi-z_0}=\summe_{k=0}^{\infty}\bruch{(z-z_0)^k}{(\xi-z_0)^{k+1}} [/mm]
<<



So, ich versuch das nun mal auseinander zu truseln. Erstmal schreib ich mit die geometrische Reihe hin: [mm] \summe_{k=0}^{\infty}a_0*q^k=a_0*\bruch{1}{1-q} [/mm]



Dann hab ich erstmal zwei Fragen zu der Aufgabenstellung:
1) Was bedeutet es, nach Potenzen von ... zu entwickeln?
2) Woher weiß ich, was mein Entwicklungspunkt ist?



Nun schreib ich mal die fertig entwickelte Potenzreihe ein bissschen um, dass sie ein bisschen mehr nach der geometrischen Reihe aussieht: [mm] \summe_{k=0}^{\infty}\bruch{1}{(\xi-z_0)^{k+1}}*(z-z_0)^k [/mm]

Wenn ich das jetzt mal mit der geometrischen Reihe vergleiche, dann müsste ja mein q der Term [mm] (z-z_0) [/mm] sein. Und mein [mm] a_0 [/mm] wäre dann [mm] \bruch{1}{(\xi-z_0)^{k+1}}. [/mm]

Aber das passt irgendwie nicht, wenn ich das mit der Umformung von  der Ausgangsfunktion [mm] \bruch{1}{\xi-z} [/mm] vergleiche. Weil da wäre [mm] a_0 [/mm] nur [mm] \bruch{1}{\xi-z_0}, [/mm] ohne den Exponenten k+1, und q müsste [mm] \bruch{z-z_0}{\xi-z_0} [/mm] sein. Außerdem ist nach der Formel der geometrischen Reihe das [mm] a_0 [/mm] unabhängig vom Laufindex der Summe, aber der Term [mm] \bruch{1}{(\xi-z_0)^{k+1}} [/mm] ist das ja definitv nicht.



Kann mir vielleicht jemand diese Reihenentwicklung erklären?

LG, Nadine

        
Bezug
Potenzreihe: Tipp
Status: (Antwort) fertig Status 
Datum: 00:25 Mo 14.07.2008
Autor: uliweil

Hallo Nadine,

du hast ja schon die richtigen Vermutungen für q und [mm] a_0, [/mm] nur musst du den Bruch in der Reihe anders zerlegen:

[mm] \summe_{k=1}^{\infty} \bruch{(z - z_0)^k}{(\xi - z_0)^{k+1}} [/mm] =

[mm] \summe_{k=1}^{\infty} \bruch{1}{(\xi - z_0)}(\bruch{z - z_0}{\xi - z_0})^k [/mm]

Jetzt erkennst du dein [mm] a_0 [/mm] und dein q.

Gruß
Uli
























Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de