www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihe
Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Mi 16.12.2009
Autor: TommyAngelo

Hi Leute,
ich soll das Konvergenzverhalten folgender Reihe auf dem Konvergenzradius untersuchen:

[mm] \summe_{n=1}^{\infty}\frac{z^n}{\sqrt{n}} [/mm]

also in den Punkten der Menge {x [mm] \in \IC [/mm] | |x|=1}

Was ich mir bisher überlegt hab:
Die Reihe ist nicht absolut konvergent, da für z=1 divergent.
Aber für z=-1 ist sie konvergent (Leibniz-Kriterium)

Nun brauche ich die restlichen Punkte.

        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Mi 16.12.2009
Autor: Niladhoc

Hallo,

eine Antwort liefert das []Kriterium von Dirichlet, wobei das Leibniz-Kriterium ein Sonderfall dieser Regel ist.

lg

Bezug
                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Mi 16.12.2009
Autor: TommyAngelo

Wenn ich das richtig sehe, dann bilden die Partialsummen [mm] \summe_{n=1}^{\infty}z^n [/mm] nicht für alle z mit |z|=1 eine beschränkte Folge, z.B. wenn z=1, dann ist die Folge nur nach unten beschränkt.

Bezug
                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 Mi 16.12.2009
Autor: leduart

Hallo
Welche Methoden kennst du denn um den Konvergenzradius zu bestimmen?
Gruss leduart

Bezug
                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Mi 16.12.2009
Autor: TommyAngelo

das Quotienten- und das Wurzelkriterium

Bezug
                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Mi 16.12.2009
Autor: leduart

Hallo
Beide Kriterien geben dir doch den Radius an. Randstellen also z=1 und -1 muss man immer einzeln untersuchen.
Gruss leduart

Bezug
                                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Mi 16.12.2009
Autor: TommyAngelo

Genau, und was mach ich mit den restlichen Punkten auf dem Kreis?

Bezug
                                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mi 16.12.2009
Autor: leduart

Hallo
wenn es bei 1 nicht konvergiert, dann höchstens noch bei -1. Gruss leduart

Bezug
                                                                
Bezug
Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Mi 16.12.2009
Autor: TommyAngelo

Wenn es für 1 divergiert, warum divergiert es dann auch für alle anderen bis auf -1?
Warum muss es z.B. für i divergieren?

Wenn ich die Folge der Partialsumme anschaue:
i
i-1
i-1-i = -1
i-1-i+1 = 0

D.h. es ensteht ein Viereck, das ja auch beschränkt ist oder nicht?

EDIT: Ich sehe gerade, das Kriterium von Dirichlet gilt nur für reelle Folgen.

Bezug
                                                                        
Bezug
Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 02:03 Do 17.12.2009
Autor: felixf

Hallo!

> Wenn es für 1 divergiert, warum divergiert es dann auch
> für alle anderen bis auf -1?
>  Warum muss es z.B. für i divergieren?
>  
> Wenn ich die Folge der Partialsumme anschaue:
>  i
>  i-1
>  i-1-i = -1
>  i-1-i+1 = 0
>  
> D.h. es ensteht ein Viereck, das ja auch beschränkt ist
> oder nicht?
>  
> EDIT: Ich sehe gerade, das Kriterium von Dirichlet gilt nur
> für reelle Folgen.

Es gilt auch fuer komplexe Folgen: wende es einfach auf Real- und Imaginaerteil an und setz das Ergebnis zusammen. Eine Folge in [mm] $\IC$ [/mm] ist schliesslich genau dann beschraenkt, wenn die Folge der Realteile sowie die Folge der Imaginaerteile beschraenkt ist.

Jetzt musst du also schauen, wann [mm] $\biggl(\sum\limits_{k=0}^n z^k\biggr)_{n\in\IN}$ [/mm] beschraenkt ist. Wie du schon gesagt hast, fuer $z = -1, i, -i$ ist dies der Fall, fuer $z = 1$ nicht. Ich behaupte mal: es ist fuer alle $z [mm] \neq [/mm] 1$ mit $|z| = 1$ der Fall. Dazu schreibe $z = [mm] \exp(i [/mm] t)$ mit $t [mm] \in [/mm] (0, 2 [mm] \pi)$; [/mm] dann ist ja [mm] $z^n [/mm] = [mm] \exp(n [/mm] i t)$.

Wenn $t$ von der Form [mm] $\ell \frac{2 \pi}{n}$ [/mm] ist, dann erhaelst du [mm] $\sum_{k=0}^{n-1} z^{a+k} [/mm] = 0$ fuer jedes $a [mm] \in \IN$ [/mm] und somit erhaelst du die Bedingung. Fuer ein anderes $t$ musst du sonstwie weiterschauen.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de