www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihe entwickeln
Potenzreihe entwickeln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:08 Fr 28.03.2008
Autor: kiri111

Aufgabe
Man zeige: Die Reihe [mm] f(x):=\summe_{n=1}^{\infty} \bruch{x^{n}}{1-x^{n}} [/mm] konvergiert für jedes x [mm] \in [/mm] (-1,1) und sie konvergiert für jedes r [mm] \in [/mm] (0,1) auf dem Intervall [-1,1] gleichmäßig.

Die Funktion f ist um [mm] x_0=0 [/mm] in eine Potenzreihe entwickelbar. Man ermittle die Koeffizienten dieser Reihe.

Hallo,
den ersten Teil habe ich schon gezeigt, aber wie entwickle ich die Potenzreihe jetzt im Entwicklungspunkt [mm] x_0=0? [/mm]

Wäre sehr dankbar für einen Tipp.

Grüße kiri

        
Bezug
Potenzreihe entwickeln: umformen
Status: (Antwort) fertig Status 
Datum: 09:21 Fr 28.03.2008
Autor: Loddar

Hallo kiri!


Forme hier um ... dann solltest Du doch eine Ähnlichkeit mit der geometrischen Reihe erkennen:

[mm] $$\bruch{x^n}{1-x^n} [/mm] \ = \ [mm] \bruch{\red{1-1}+x^n}{1-x^n} [/mm] \ = \ [mm] \bruch{1}{1-x^n}+\bruch{-1+x^n}{1-x^n} [/mm] \ = \ [mm] \bruch{1}{1-x^n}-\bruch{1-x^n}{1-x^n} [/mm] \ = \ [mm] \bruch{1}{1-x^n}-1$$ [/mm]

Gruß
Loddar

Bezug
                
Bezug
Potenzreihe entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Fr 28.03.2008
Autor: kiri111

Hallo,
okay, der altbekannte Trick... Ich dank dir.

Nun habe ich aber noch ein Problem:
Es gilt dann ja jetzt folgendes:

[mm] \summe_{n=1}^{\infty} \bruch{x^{n}}{1-x^{n}}=\summe_{n=1}^{\infty} (\bruch{1}{1-x^{n}}-1)=\summe_{n=1}^{\infty}(\summe_{n=1}^{\infty}x^{n}-1) [/mm]

Aber wie lautet jetzt die Potenzreihendarstellung?

Liebe Grüße
kiri

Bezug
                        
Bezug
Potenzreihe entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Fr 28.03.2008
Autor: MathePower

Hallo kiri111,

> Hallo,
>  okay, der altbekannte Trick... Ich dank dir.
>  
> Nun habe ich aber noch ein Problem:
>  Es gilt dann ja jetzt folgendes:
>  
> [mm]\summe_{n=1}^{\infty} \bruch{x^{n}}{1-x^{n}}=\summe_{n=1}^{\infty} (\bruch{1}{1-x^{n}}-1)=\summe_{n=1}^{\infty}(\summe_{n=1}^{\infty}x^{n}-1)[/mm]

[mm]\summe_{n=1}^{\infty} \bruch{x^{n}}{1-x^{n}}=\summe_{n=1}^{\infty} (\bruch{1}{1-x^{n}}-1)=\summe_{n=1}^{\infty}(\summe_{l=0}^{\infty}{\left(x^{n}\right)}^{l}-1)=\summe_{n=1}^{\infty}(1+\summe_{l=1}^{\infty}{\left(x^{n}\right)}^{l}-1)=\summe_{n=1}^{\infty}\summe_{l=1}^{\infty}{\left(x^{n}\right)}^{l}[/mm]

Setzen wir nun [mm]n*l=k[/mm], so nehmen n bzw. l alle Werte an, die Teiler von k sind.

Demnach haben wir:

[mm]\summe_{n=1}^{\infty}\summe_{l=1}^{\infty}{\left(x^{n}\right)}^{l}=\summe_{k=1}^{\infty}\left(\summe_{n | k}^{}{1}\right)*x^{k}[/mm]

> Aber wie lautet jetzt die Potenzreihendarstellung?
>  
> Liebe Grüße
>  kiri

Gruß
MathePower

Bezug
                                
Bezug
Potenzreihe entwickeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Fr 28.03.2008
Autor: kiri111

Hallo,
okay, das ist geschickt... Vielen Dank.

Ganz liebe Grüße
kiri

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de