www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihe entwickeln
Potenzreihe entwickeln < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihe entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Do 11.04.2013
Autor: Der-Madde-Freund

Hello,

ich muss folgende Funktion [mm] f(x)=\frac{x-1}{x^2+2} [/mm] um [mm] x_0=0 [/mm] in eine Potenzreihe bringen.

Dazu muss ich Koeffizientenvergleich benutzen, also erhalte ich:

[mm] \gdw \frac{x-1}{x^2+2} [/mm] = [mm] \summe_{n=0}^{\infty}a_n \cdot x^n [/mm]

[mm] \gdw [/mm] x-1 = [mm] (x^2+2) \cdot \summe_{n=0}^{\infty}a_n \cdot x^n [/mm]

[mm] \gdw [/mm] x-1 = [mm] \summe_{n=0}^{\infty}2a_n \cdot x^n [/mm] + [mm] \summe_{n=0}^{\infty}a_n \cdot x^{n+2} [/mm]

[mm] \gdw [/mm] x-1 = [mm] 2a_0 [/mm] + [mm] 2a_1 \cdot [/mm] x + [mm] \summe_{n=2}^{\infty}(2a_n+a_{n-2}) \cdot x^n [/mm]

Nun bekomme ich ja: [mm] 2a_0 [/mm] = -1 und [mm] 2a_1 [/mm] x = x und [mm] 2a_n+a_{n-2} [/mm] = 0, woraus ich folgere, dass [mm] a_0=-0,5 [/mm] und [mm] a_1 [/mm] = 0,5 gelten muss.


Wie bekomme ich nun aber die Darstellung der Potenzreihe damit???

        
Bezug
Potenzreihe entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Do 11.04.2013
Autor: MathePower

Hallo Der-Madde-Freund,

> Hello,
>  
> ich muss folgende Funktion [mm]f(x)=\frac{x-1}{x^2+2}[/mm] um [mm]x_0=0[/mm]
> in eine Potenzreihe bringen.
>  
> Dazu muss ich Koeffizientenvergleich benutzen, also erhalte
> ich:
>  
> [mm]\gdw \frac{x-1}{x^2+2}[/mm] = [mm]\summe_{n=0}^{\infty}a_n \cdot x^n[/mm]
>  
> [mm]\gdw[/mm] x-1 = [mm](x^2+2) \cdot \summe_{n=0}^{\infty}a_n \cdot x^n[/mm]
>  
> [mm]\gdw[/mm] x-1 = [mm]\summe_{n=0}^{\infty}2a_n \cdot x^n[/mm] +
> [mm]\summe_{n=0}^{\infty}a_n \cdot x^{n+2}[/mm]
>  
> [mm]\gdw[/mm] x-1 = [mm]2a_0[/mm] + [mm]2a_1 \cdot[/mm] x +
> [mm]\summe_{n=2}^{\infty}(2a_n+a_{n-2}) \cdot x^n[/mm]
>  
> Nun bekomme ich ja: [mm]2a_0[/mm] = -1 und [mm]2a_1[/mm] x = x und
> [mm]2a_n+a_{n-2}[/mm] = 0, woraus ich folgere, dass [mm]a_0=-0,5[/mm] und [mm]a_1[/mm]
> = 0,5 gelten muss.
>  
>
> Wie bekomme ich nun aber die Darstellung der Potenzreihe
> damit???  


Entwickle dem Bruch [mm]\bruch{1}{x^{2}+2}[/mm] in eine geometrische Reihe.

Es ist doch:

[mm]\bruch{x-1}{2+x^{2}}=\bruch{x-1}{2-\left(-x^{2}\right)}=\bruch{1}{2}*\bruch{x-1}{1-\left(-\bruch{x^{2}}{2}\right)}[/mm]

Je nach dem für welche x das konvergieren soll.


Gruss
MathePower

Bezug
                
Bezug
Potenzreihe entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:52 Do 11.04.2013
Autor: Der-Madde-Freund


> Entwickle dem Bruch [mm]\bruch{1}{x^{2}+2}[/mm] in eine geometrische
> Reihe.
>  
> Es ist doch:
>  
> [mm]\bruch{x-1}{2+x^{2}}=\bruch{x-1}{2-\left(-x^{2}\right)}=\bruch{1}{2}*\bruch{x-1}{1-\left(-\bruch{x^{2}}{2}\right)}[/mm]
>  
> Je nach dem für welche x das konvergieren soll.


Also wenn ich [mm] \frac{1}{x^2+2} [/mm] in eine Potenzreiche entwickle, dann erhalte ich ja:
[mm] \frac{1}{x^2+2} [/mm] = [mm] \frac{1}{2} \cdot \frac{1}{1-(-\frac{x^2}{2})} [/mm] = [mm] \summe_{n=0}^{\infty}\frac{(-1)^n}{2^{n+1}} \cdot x^{2n} [/mm]


Mir will aber nicht ganz einleuchten, wozu ich die Koeffizienten dazu berechnen musste?

Bezug
                        
Bezug
Potenzreihe entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Do 11.04.2013
Autor: MathePower

Hallo Der-Madde-Freund,

> > Entwickle dem Bruch [mm]\bruch{1}{x^{2}+2}[/mm] in eine geometrische
> > Reihe.
>  >  
> > Es ist doch:
>  >  
> >
> [mm]\bruch{x-1}{2+x^{2}}=\bruch{x-1}{2-\left(-x^{2}\right)}=\bruch{1}{2}*\bruch{x-1}{1-\left(-\bruch{x^{2}}{2}\right)}[/mm]
>  >  
> > Je nach dem für welche x das konvergieren soll.
>  
>
> Also wenn ich [mm]\frac{1}{x^2+2}[/mm] in eine Potenzreiche
> entwickle, dann erhalte ich ja:
>   [mm]\frac{1}{x^2+2}[/mm] = [mm]\frac{1}{2} \cdot \frac{1}{1-(-\frac{x^2}{2})}[/mm]
> = [mm]\summe_{n=0}^{\infty}\frac{(-1)^n}{2^{n+1}} \cdot x^{2n}[/mm]
>  


[ok]


>
> Mir will aber nicht ganz einleuchten, wozu ich die
> Koeffizienten dazu berechnen musste?  


Für die Ermittlung  der geforderten Potenzreihe von [mm]\bruch{x-1}{x^{2}+2}[/mm]
benötigst Du die Koeffizienten der Potenzreihe von [mm]\bruch{1}{x^{2}+2}[/mm].


Gruss
MathePower

Bezug
                                
Bezug
Potenzreihe entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 Do 11.04.2013
Autor: Der-Madde-Freund

Muss ich dann quasi sagen, dass für gerade Koeffizienten gilt [mm] a_{2n}= \frac{(-1)^{n+1}}{2^{n+1}} [/mm] und für ungerade: [mm] a_{2n+1}= \frac{(-1)^{n}}{2^{n+1}}? [/mm]

Worauf man durch die Koeffizientengleichungen [mm] 2a_0 [/mm] = -1 (gerade) und 2 [mm] a_1 [/mm] = 1 (ungerade) schließen konnte?

Die +-0,5 für die Koeffizienten spielen dann doch keine explizite Rolle, oder bin ich gerade wieder auf dem Holzweg?

Bezug
                                        
Bezug
Potenzreihe entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Do 11.04.2013
Autor: fred97


> Muss ich dann quasi sagen, dass für gerade Koeffizienten
> gilt [mm]a_{2n}= \frac{(-1)^{n+1}}{2^{n+1}}[/mm] und für ungerade:
> [mm]a_{2n+1}= \frac{(-1)^{n}}{2^{n+1}}?[/mm]
>  
> Worauf man durch die Koeffizientengleichungen [mm]2a_0[/mm] = -1
> (gerade) und 2 [mm]a_1[/mm] = 1 (ungerade) schließen konnte?
>  
> Die +-0,5 für die Koeffizienten spielen dann doch keine
> explizite Rolle, oder bin ich gerade wieder auf dem
> Holzweg?  



Du mußt doch nur noch die Potenzreihe

[mm] \summe_{n=0}^{\infty}\frac{(-1)^n}{2^{n+1}} \cdot x^{2n} [/mm]

mit x-1 multiplizieren.

Die gesuchte Potenzreihe ist dann


  = [mm] \summe_{n=0}^{\infty}\frac{(-1)^n}{2^{n+1}} \cdot x^{2n+1}-\summe_{n=0}^{\infty}\frac{(-1)^n}{2^{n+1}} \cdot x^{2n} [/mm]


Kannst Du das noch zusammenfassen ?

FRED

Bezug
                                                
Bezug
Potenzreihe entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 Do 11.04.2013
Autor: Der-Madde-Freund

Also hätte man sich den Koeffizientenvergleich sparen können und hätte einfach deine oben genannte Multiplikatiion durchführen können?


In eine Summe schreiben:

[mm] \summe_{n=0}^{\infty}(\frac{(-1)^n}{2^{n+1}} \cdot x^{2n+1}-\frac{(-1)^n}{2^{n+1}} \cdot x^{2n}) [/mm]

Bezug
                                                        
Bezug
Potenzreihe entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Do 11.04.2013
Autor: MathePower

Hallo Der-Madde-Freund,

> Also hätte man sich den Koeffizientenvergleich sparen
> können und hätte einfach deine oben genannte
> Multiplikatiion durchführen können?
>  


Ja..


>
> In eine Summe schreiben:
>  
> [mm]\summe_{n=0}^{\infty}(\frac{(-1)^n}{2^{n+1}} \cdot x^{2n+1}-\frac{(-1)^n}{2^{n+1}} \cdot x^{2n})[/mm]
>  


Gruss
MathePower

Bezug
                                                                
Bezug
Potenzreihe entwickeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Do 11.04.2013
Autor: Der-Madde-Freund

Achso, ok das habe ich dann verstanden!!!

Aber ich würde trotzdem gerne noch die Variante mit dem Koeffizientenvergleich verstehen :p

Also, wenn ich bei dieser Umformung bin:
x-1 = $ [mm] 2a_0 [/mm] $ + $ [mm] 2a_1 \cdot [/mm] $ x + $ [mm] \summe_{n=2}^{\infty}(2a_n+a_{n-2}) \cdot x^n [/mm] $
dann kann ich ja jetzt direkt die Koefizienten berechnen und zwar [mm] a_o=-0,5 [/mm] und [mm] a_1 [/mm] = 0,5.

Mein Problem ist nun einfach, dass ich den nächsten Schritt irgendwie nicht durchblicke, also was ich genau mit denen machen muss. Bei der Partialbruchzerlegung gibt es ja spezielle Ansätze, wo die berechneten Koeffizienten eingesetzt werden, aber hier bei den Potenzreihen bin ich überfragt...

Bin wohl ein hoffnungsloser Fall :p

Bezug
                                                                        
Bezug
Potenzreihe entwickeln: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Do 11.04.2013
Autor: MathePower

Hallo Der-Madde-Freund,

> Achso, ok das habe ich dann verstanden!!!
>  
> Aber ich würde trotzdem gerne noch die Variante mit dem
> Koeffizientenvergleich verstehen :p
>
> Also, wenn ich bei dieser Umformung bin:
>  x-1 = [mm]2a_0[/mm] + [mm]2a_1 \cdot[/mm] x +
> [mm]\summe_{n=2}^{\infty}(2a_n+a_{n-2}) \cdot x^n[/mm]
>  dann kann
> ich ja jetzt direkt die Koefizienten berechnen und zwar
> [mm]a_o=-0,5[/mm] und [mm]a_1[/mm] = 0,5.
>  
> Mein Problem ist nun einfach, dass ich den nächsten
> Schritt irgendwie nicht durchblicke, also was ich genau mit
> denen machen muss. Bei der Partialbruchzerlegung gibt es ja
> spezielle Ansätze, wo die berechneten Koeffizienten
> eingesetzt werden, aber hier bei den Potenzreihen bin ich
> überfragt...
>  


Ein Koeffizientenvergleich ergibt für [mm]n \ge 2[/mm]:

[mm]2*a_{n}+a_{n-2}=0[/mm]

Daraus erhältst Du eine Rekursionsformel für die [mm]a_{n}[/mm].


> Bin wohl ein hoffnungsloser Fall :p


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de