www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Potenzreihen
Potenzreihen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:01 Fr 24.10.2008
Autor: grenife

Aufgabe
Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen:

1) [mm] \sum_{n=0}^{\infty}a^nz^{2n}\ (a\in\mathbb{C}) [/mm]

2) [mm] \sum_{n=0}^{\infty} (n^3+n^2+n+1)z^n [/mm]

3) [mm] \sum_{n=0}^{\infty} \frac{1}{cosh\ n}z^n [/mm]

4) [mm] \sum_{n=0}^{\infty} n^iz^n [/mm]

Hallo zusammen,

komme irgendwie bei keiner der Potenzreihen wirklich weiter. Dass ich den Konvergenzradius mit der Cauchy-Hadamard-Formel bestimmen kann, ist mir klar. Nur bei der ersten Reihe weiß ich nicht so recht, wie ich die Potenz 2n zur üblichen Darstellung [mm] $c_n(z-a)^n$ [/mm] mit $a=0$ ändern kann. Bei den übrigen Reihen habe ich dieses Problem zwar nicht (Entwicklungspunkt ist stets =0), aber wie bestimme hier am besten den lim sup der n-ten Wurzel aus z.B. der Summe in der zweiten Reihe (besser gesagt wie schätze ich sie ab)?

Vielen Dank für Eure Tipps und viele Grüße
Gregor


        
Bezug
Potenzreihen: nur mal zu 1.) und 2.)
Status: (Antwort) fertig Status 
Datum: 17:39 Fr 24.10.2008
Autor: Marcel

Hallo,

> Bestimmen Sie den Konvergenzradius der folgenden
> Potenzreihen:
>  
> 1) [mm]\sum_{n=0}^{\infty}a^nz^{2n}\ (a\in\mathbb{C})[/mm]

ich behaupte mal, dass Du hier den Konvergenzradius [mm] $\black{r}$ [/mm] erhälts vermittels:

[mm] $$r=\frac{1}{\limsup_{n \to \infty} \sqrt[2n]{|a^n|}}\,.$$ [/mm]

Warum? Nun, wenn Du eine Reihe der Form [mm] $\sum_{n=0}^\infty r_n z^{2n}$ [/mm] hast, so könntest Du erstmal sagen: Naja, wenn ich mir die Folge der Teilsummen angucke, so passt das ja gar nicht zur Definition einer Potenzreihe (in einer Potenzreihe steht beim [mm] $\black{n}$-ten [/mm] Glied der Teilsummenfolge als höchste Potenz ja [mm] $\black{n}$, [/mm] und nicht [mm] $\black{2n}$ [/mm] wie hier!).

Du kannst Dir aber einen Zusammenhang zwischen [mm] $\sum_{n=0}^\infty r_n z^{2n}$ [/mm] und [mm] $\sum_{n=0}^\infty s_n z^{n}$ [/mm] überlegen, wobei Du dann [mm] $$s_n:=\begin{cases} 0, & \mbox{für } n \mbox{ ungerade} \\ r_{\frac{n}{2}}, & \mbox{für } n \mbox{ gerade} \end{cases}$$ [/mm]

definierst. Beide Reihen haben (für jedes $z [mm] \in \IC$) [/mm] das selbe Konvergenzverhalten.

[mm] $\sum_{n=0}^\infty s_n z^n$ [/mm] hat allerdings die Form einer Potenzreihe, und ferner sollte Dir klar sein, dass [mm] $$\limsup_{n \to \infty}\sqrt[n]{|s_n|}=\limsup_{\substack{n \to \infty\\n \text{ gerade}}}\sqrt[n]{|r_{\frac{n}{2}}|}=\limsup_{n \to \infty}\sqrt[2n]{|r_{n}|}\,.$$ [/mm]

Daraus folgt dann meine Behauptung für den Konvergenzradius von oben, da hier speziell [mm] $r_n:=a^n$ [/mm] $(n [mm] \in \IN_0)\,.$ [/mm]

Alternative:
Bei einer Reihe der Form [mm] $\sum_{n=0}^{\infty}r_n z^{2n}$ [/mm] substituiere [mm] $\tilde{z}:=z^2\,.$ [/mm] Dadurch ist [mm] $\sum_{n=0}^{\infty}r_n \tilde{z}^{\;n}$ [/mm] eine Potenzreihe in [mm] $\tilde{z}$. [/mm] Bezgl. [mm] $\tilde{z}$ [/mm] erhältst Du dann einen Konvergenzradius [mm] $\tilde{r}=\tilde{r}(\tilde{z})$. [/mm]

Wenn Du den berechnet hast, so weißt Du dann, dass [mm] $\sum_{n=0}^{\infty}r_n \tilde{z}^{\;n}$ [/mm] für alle [mm] $|\tilde{z}| [/mm] < [mm] \tilde{r}$ [/mm] konvergiert und für alle [mm] $\tilde{z} [/mm] > [mm] \tilde{r}$ [/mm] divergiert.

Damit konvergiert dann [mm] $\sum_{n=0}^{\infty}r_n z^{2n} \equiv\sum_{n=0}^{\infty}r_n \tilde{z}^{n}$ [/mm] für alle [mm] $|z^2| [/mm] < [mm] \tilde{r}$ [/mm] und divergiert für alle [mm] $|z^2| [/mm] > [mm] \tilde{r}$. [/mm]

Was bedeutet das für den Konvergenzradius $r=r(z)$ der Reihe [mm] $\sum_{n=0}^{\infty}x_n z^{2n}$? [/mm]

> 2) [mm]\sum_{n=0}^{\infty} (n^3+n^2+n+1)z^n[/mm]

Du musst ja hier [mm] $\limsup_{n \to \infty} \sqrt[n]{n^3+n^2+n+1}$ [/mm] berechnen. Ich gebe Dir mal den Tipp:

Für alle $n [mm] \in \IN$ [/mm] ist
$$n [mm] \le n^3+n^2+n+1 \le 4*n^3\,.$$ [/mm]

Nun beachte, dass [mm] $\sqrt[n]{n} \to [/mm] 1$ und auch [mm] $\sqrt[n]{4} \to [/mm] 1$ bei $n [mm] \to \infty$ [/mm] gilt.

Gruß,
Marcel

Bezug
        
Bezug
Potenzreihen: zu 3.) und 4.)
Status: (Antwort) fertig Status 
Datum: 18:11 Fr 24.10.2008
Autor: Marcel

Hallo nochmal,

>  
> 3) [mm]\sum_{n=0}^{\infty} \frac{1}{cosh\ n}z^n[/mm]

benutze hier [mm] $\frac{1}{\cosh(n)}=\frac{2}{e^n+e^{-n}}\,,$ [/mm] und überlege Dir dann, warum

[mm] $$\sqrt[n]{e^{n}+e^{-n}} \to e\;\;\;\text{ bei }n \to \infty\,.$$ [/mm]
  
(Vielleicht findest Du das ja wieder durch eine geeignete Anwendung des Einschlußkriteriums heraus?)

Außerdem gilt [mm] $\sqrt[n]{2} \to [/mm] 1$ bei $n [mm] \to \infty\,.$ [/mm]

> 4) [mm]\sum_{n=0}^{\infty} n^iz^n[/mm]

Tipp:

[mm] $$n^i=\left(e^{\ln(n)}\right)^i=e^{i\cdot \ln(n)}\,.$$ [/mm]

Dann denke an die []Eulersche Identität bzw. [mm] $\left|e^{i\varphi}\right|=1$ [/mm] für alle [mm] $\varphi \in \IR\,.$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de