www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Potenzreihen
Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:05 Di 16.12.2008
Autor: relation

Aufgabe
Berechne den Konvergenzradius folgender Potenzreihe(n)

[mm] 1.\summe_{n=0}^{\infty} \bruch{x^{2n+1}}{4^n} [/mm]

2. [mm] \summe_{n=0}^{\infty} (3+(-1)^n)^n*x^n [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo! so, wie ich das in der vorlesung verstanden habe, betrachtet man in der allg.PR [mm] \summe a_nz^n [/mm] nur den ausdruck [mm] a_n, [/mm] der vor [mm] z^n [/mm] steht--mit wurzelkriterium oder quotientenkriterium zb. der kehrwert davon ist dann mein KVGR.
zu 1.:nun habe ich hier aber das problem, dass ich nicht genau weiß, was mein [mm] a_n [/mm] ist! dann steht in der potenz auch nicht einfach nur n sondern 2n+1....ich habe einfach mal folgenden versuch gestartet:

lim [mm] sup\wurzel[2n+1]{\bruch{1}{4^n}}= [/mm] lim sup [mm] |\bruch{1}{4^{\bruch{1}{2+\bruch{1}{n}}}}|=\bruch{1}{2} [/mm]

und damit hätte ich einen kvgr von 2. geht das so? wenn nicht, wo liegt mein denkfehler?

2. hier wende ich wieder das wurzelkr. an und erhalte für gerade n ja 4 als lim sup. folglich wäre mein kvgr [mm] \bruch{1}{4}. [/mm] stimmt das so? muss ich eine fallunterscheidung machen (gerade/ungerade)und erhalte verschiedene kvgradien oder ist der kvgr für alle gleich??

vielen dank schonmal!




        
Bezug
Potenzreihen: zu Aufgabe 2
Status: (Antwort) fertig Status 
Datum: 11:13 Di 16.12.2008
Autor: Roadrunner

Hallo relation,

[willkommenmr] !!


> 2. hier wende ich wieder das wurzelkr. an und erhalte für
> gerade n ja 4 als lim sup. folglich wäre mein kvgr [mm]\bruch{1}{4}.[/mm] stimmt das so?

[ok]


> muss ich eine fallunterscheidung machen (gerade/ungerade)und erhalte
> verschiedene kvgradien oder ist der kvgr für alle gleich??

Nein, es ist keine Fallunterscheidung notwendig. Und es gibt auch einen Konvergenzradius.

Dafür "sorgt" ja schon der [mm] $\limsup$ [/mm] (und nicht nur einfach [mm] $\limes$) [/mm] beim Wurzelausdruck.


Gruß vom
Roadrunner


Bezug
                
Bezug
Potenzreihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Di 16.12.2008
Autor: relation

ja super, danke!

und was sagt ihr zu meiner lösung bei 1.???

Bezug
        
Bezug
Potenzreihen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Di 16.12.2008
Autor: angela.h.b.


> Berechne den Konvergenzradius folgender Potenzreihe(n)
>  
> [mm]1.\summe_{n=0}^{\infty} \bruch{x^{2n+1}}{4^n}[/mm]
>  
> 2. [mm]\summe_{n=0}^{\infty} (3+(-1)^n)^n*x^n[/mm]

> 2. hier wende ich wieder das wurzelkr. an und erhalte für
> gerade n ja 4 als lim sup. folglich wäre mein kvgr
> [mm]\bruch{1}{4}.[/mm] stimmt das so? muss ich eine
> fallunterscheidung machen (gerade/ungerade)und erhalte
> verschiedene kvgradien oder ist der kvgr für alle gleich??

Hallo,

das ist richtig so.

Die Fallunterscheidung hast Du gemacht, um den limsup zu finden, und damit hast Du den Konvergenzradius.

Deine Idee mit "Konvergenzradius für gerade und ungerade" ist doch Unfug.
Du betrachtest eine Reihe und willst wissen, für welche x sie konvergiert. Da gibt's kein gerade und ungerade.

Gruß v. Angela


Bezug
                
Bezug
Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Di 16.12.2008
Autor: relation

ja, jetzt ist es mir auch klar!

habe mal noch mit anderen aufgaben weitergemacht...meistens besteht das problem darin, eine geeignete umformung vorzunehmen...hier noch ein bsp, das mir probleme bereitet:
[mm] \summe_{n=0}^{\infty}(n+a^n)x^n [/mm] für [mm] a\ge0 [/mm]

ich bilde lim sup [mm] \wurzel[n]{n+a^n}...wie [/mm] mache ich dann am besten weiter? meine idee ist, abzuschätzen: lim sup [mm] \wurzel[n]{n+a^n}< [/mm] lim sup [mm] (\wurzel[n]{n}+\wurzel[n]{a^n})=1+a. [/mm] aber dann? ich vermute, ich müsste auf eine kvg gegen a kommen...

gruß und danke

Bezug
                        
Bezug
Potenzreihen: ausklammern
Status: (Antwort) fertig Status 
Datum: 22:00 Di 16.12.2008
Autor: Roadrunner

Hallo relation!


Klammere hier wie folgt aus:
[mm] $$\wurzel[n]{n+a^n} [/mm] \ = \ [mm] \wurzel[n]{a^n*\left(\bruch{n}{a^n}+1\right)} [/mm] \ = \ [mm] \wurzel[n]{a^n}*\wurzel[n]{\bruch{n}{a^n}+1} [/mm] \ = \ [mm] a*\wurzel[n]{\bruch{n}{a^n}+1}$$ [/mm]

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de