www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Potenzreihenentwicklung
Potenzreihenentwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Potenzreihenentwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 So 25.10.2015
Autor: Pia90

Hallo zusammen,

ich wollte gerade nochmal eine Potenzreihenentwicklung durchführen, bekomme es aber gerade nicht hin...

Ich möchte die Funktion [mm] f(z)=\bruch{e^{iz}}{z^4} [/mm] in eine Potenzreihe um [mm] z_0=1 [/mm] entwickeln.

Als erstes hab ich probiert erstmal die Reihendarstellung der Exponentialfunktion zu nutzen, aber da komme ich dann irgendwann nicht mehr weiter.

[mm] f(z)=\bruch{1}{z^4} \summe_{n=0}^{\infty} \bruch{(iz)^{n}}{n!} [/mm] = [mm] \summe_{n=0}^{\infty} \bruch{i^n}{n!} z^{n-4} [/mm]

Weiter kam mir der Gedanke, dass man vielleicht Zähler und Nenner separat entwickeln könnte und dann mit dem Cauchy-Produkt arbeiten...

Ich habe im Moment aber ein totales Blackout und verzweifel echt an dieser Funktion...

Ich weiß es ist Sonntag, aber vielleicht gibt es hier ja doch jemanden, der mir weiterhelfen kann?

Ich hab im Moment noch nichtmal mehr ne Ahnung, was der Konvergenzradius dieser Funktion ist...  Oder ist der "einfach" 1? Weil in 0 ist ja eine Problemstelle, weshalb der Konvergenzkreis ja eigentlich ausgehend von dem Entwicklungspunkt 1 nicht größer sein kann...

Wäre echt super, wenn mir jemand spontan und recht kurzfristig etwas Licht ins Dunkel bringen könnte...

Danke euch schonmal!


        
Bezug
Potenzreihenentwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 So 25.10.2015
Autor: fred97


> Hallo zusammen,
>
> ich wollte gerade nochmal eine Potenzreihenentwicklung
> durchführen, bekomme es aber gerade nicht hin...
>  
> Ich möchte die Funktion [mm]f(z)=\bruch{e^{iz}}{z^4}[/mm] in eine
> Potenzreihe um [mm]z_0=1[/mm] entwickeln.
>
> Als erstes hab ich probiert erstmal die Reihendarstellung
> der Exponentialfunktion zu nutzen, aber da komme ich dann
> irgendwann nicht mehr weiter.
>  
> [mm]f(z)=\bruch{1}{z^4} \summe_{n=0}^{\infty} \bruch{(iz)^{n}}{n!}[/mm]
> = [mm]\summe_{n=0}^{\infty} \bruch{i^n}{n!} z^{n-4}[/mm]
>  
> Weiter kam mir der Gedanke, dass man vielleicht Zähler und
> Nenner separat entwickeln könnte und dann mit dem
> Cauchy-Produkt arbeiten...


Gute Idee.....



>  
> Ich habe im Moment aber ein totales Blackout und verzweifel
> echt an dieser Funktion...
>  
> Ich weiß es ist Sonntag, aber vielleicht gibt es hier ja
> doch jemanden, der mir weiterhelfen kann?
>  
> Ich hab im Moment noch nichtmal mehr ne Ahnung, was der
> Konvergenzradius dieser Funktion ist...  Oder ist der
> "einfach" 1? Weil in 0 ist ja eine Problemstelle, weshalb
> der Konvergenzkreis ja eigentlich ausgehend von dem
> Entwicklungspunkt 1 nicht größer sein kann...

So ist es.


FRED

>
> Wäre echt super, wenn mir jemand spontan und recht
> kurzfristig etwas Licht ins Dunkel bringen könnte...
>  
> Danke euch schonmal!
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de