www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Prä-Hilbertraum
Prä-Hilbertraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prä-Hilbertraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Sa 22.04.2006
Autor: Joergi

Hallo zusammen,

ich soll eine Aufgabe lösen und finde leider noch nicht einmal einen Ansatz. Wenn mir jemand sagen könnte unter welchem Stichwort diese Ungleichung läuft bzw. was sie bedeutet, dann wäre mir bestimmt auch schon geholfen.

a) Es sei H ein Prä-Hilbertraum über dem Körper [mm]\IK[/mm]. Zeigen Sie, dass für alle [mm]f,g \in H[/mm], [mm]g\not=0 [/mm] gilt:

[mm]f \perp g \gdw \parallel f \parallel \le \parallel f+\alpha g \parallel[/mm] für alle [mm]\alpha\in\IK[/mm] [mm]\gdw \parallel f \parallel \le \parallel f+\alpha g \parallel[/mm] für alle [mm]\alpha \in \IK[/mm][mm]\{0}[/mm] (ohne Null).

b) Ausgehend von a) definiere man in einem beliebigen Banach-Raum X über [mm]\IK[/mm] für je zwei Eelemente [mm]f,g \in X[/mm],

[mm]f \perp g \gdw \parallel f \parallel \le \parallel f+\alpha g \parallel[/mm] für alle [mm]\alpha\in\IK[/mm].

(i) Was bedeutet die Definition geometrisch?

(ii) Speziell sein [mm]X=\IR^{2}[/mm] mit der Maximumsnorm versehen. Zu welchem [mm]f\in X[/mm] mit [mm]\parallel f \parallel = 1[/mm] ist der Vektor [mm](0,1)[/mm] orthogonal? Folgt in diesem Beispiel aus [mm]f \perp g[/mm] stets [mm]g \perp f[/mm] und aus [mm]f \perp g[/mm], [mm]f \perp h [/mm] stets [mm]f \perp g+h[/mm]?

Danke schon mal im voraus für alle Ideen und Mühen Eurerseits.

Joergi

        
Bezug
Prä-Hilbertraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Sa 22.04.2006
Autor: MatthiasKr

Hallo Jörgi,

keine angst vor dieser aufgabe! ;-) es geht zunächst darum, orthogonalität in einem (prä-)hilbertraum zu charakterisieren, ohne (explizit) das skalarprodukt zu verwenden. Diese definition wird dann im zweiten teil der aufgabe auf banachräume übertragen, die ja im allgemeinen keine skalarprodukt-struktur besitzen.
ein tip: sobald hilbertraum-struktur vorausgesetzt wird, musst du diese eigenschaft auch ausnutzen! es gilt also für  [mm] $f\perp [/mm] g$

[mm] $\|f+\alpha g\|^2=(f+\alpha g,f+\alpha g)=\|f\|^2+2\alpha(f,g)+\alpha^2 \|g\|^2\ge \|f\|^2+2\alpha(f,g)$=$\|f\|^2$ [/mm]

So wäre also eine richtung der ersten äquivalenz schon gezeigt (im reellen fall, komplex geht ähnlich). versuche mal den rest!

ganz wichtig, mache dir klar, was diese eigenschaft anschaulich bedeutet.

VG
Matthias


Bezug
                
Bezug
Prä-Hilbertraum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:09 So 23.04.2006
Autor: Joergi

Erst einmal Hallo, und vielen Dank für Deine Mühen.

Ich habe mir Deinen Rat zu Herzen genommen, zumal ich gestehen muss, wenn ich Skalarprodukt nur höre dann fängt es schon an :-)

Aber dennoch habe ich mich versucht. Ich habe also mal geschaut, was Du da gemacht hast und mit Hilfe der Rechenregeln für ein Skalarprodukt das ganze mal etwas ausführlicher aufgeschrieben, was dann so aussehen würde, wenn es denn richtig ist:

[mm] \parallel f + \alpha g \parallel ^{2} = [/mm]
[mm] = + + <\alpha g,f> + [/mm]
[mm] = \parallel f \parallel^{2} + + <\alpha g,f> + \alpha^{2} * \parallel g \parallel^{2}[/mm]
[mm] = \parallel f \parallel^{2} + 2* + \alpha * \parallel g \parallel^{2}[/mm] da wir im Reellen sind
[mm] \ge \parallel f \parallel^{2} + 2* [/mm]
[mm] \ge \parallel f \parallel^{2}[/mm] insbesondere gleich wenn [mm] \alpha = 0 [/mm].

Jetzt stehe ich etwas auf dem Schlauch wenn ich die Rückrichtung zeigen muss, denn es muss ja herauskommen, dass [mm]f \prep g[/mm], aber wie fange ich an????

Ich habe schon mal auch die Hinrichtung im Komplexen gezeigt:

[mm] \parallel f + \alpha g \parallel ^{2} = [/mm]
[mm] = + + <\alpha g,f> + [/mm]
[mm] = \parallel f \parallel^{2} + + \overline{} + \alpha* \overline {\alpha}*\parallel g \parallel^{2}[/mm]
[mm] = \parallel f \parallel^{2} + \overline {\alpha}* + \overline {\alpha}* \overline{} + \alpha* \overline {\alpha}*\parallel g \parallel^{2}[/mm]
[mm] = \parallel f \parallel^{2}+ 2 * \overline {\alpha}*Re + \alpha* \overline {\alpha}*\parallel g \parallel^{2}[/mm]
[mm] \ge \parallel f \parallel^{2}+ 2 * \overline {\alpha}*Re[/mm]
[mm] \ge \parallel f \parallel^{2}[/mm]

Ich hoffe mal, das stimmt so einigermaßen wenn ich es recht verstanden habe, wie gesagt, für die Rückrichtung bräuchte ich einen Tipp zum Ansatz.

Ich habe mir auch mal zu (b) (i) überlegt, was das geometrisch bedeuten könnte, also:
Wenn [mm]f \perp g [/mm], dann ist der „Verbindungsvektor“ ja gerade [mm]f+g[/mm]. [mm]f \perp g[/mm] bilden einen rechten Winkel, dh. nach Pythagoras ist dann der „Verbindungsvektor“ [mm]f+g[/mm] die Hypotenuse im Dreieck.

Ist [mm]\alpha = 0 [/mm], dann ist ja [mm] \parallel f + \alpha g \parallel ^{2} \ge \parallel f \parallel^{2}[/mm] und das heißt ja nichts anderes, als dass die Seite [mm]f[/mm] und die Seite [mm]f+g[/mm] gleichschenklig sind und wir somit ein gleichschenklig-rechtwinkliges Dreieck erhalten, oder!?

Ist [mm]\alpha \not= 0 [/mm], dann ist ja [mm] \parallel f + \alpha g \parallel ^{2} \ge \parallel f \parallel^{2}[/mm], dh. [mm]f+g[/mm] ist länger als [mm]f[/mm] und somit ist  [mm]f+g[/mm] genauso lang wie [mm]g[/mm], also auch ein gleichschenklig-rechtwinkliges Dreieck, wenn es denn stimmt!? Man sieht wie unsicher ich bin .... :-)


Zum Aufgabenteil (ii) habe ich auch noch gar keine Idee. Was ist denn da überhaupt gemeint?


Vielen Dank für die Geduld *schäm*

Joergi


Bezug
                        
Bezug
Prä-Hilbertraum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 25.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de