www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prädikatenlogik" - Prädikatenlogik
Prädikatenlogik < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prädikatenlogik: Sätze in Prädikaktenlogik
Status: (Frage) beantwortet Status 
Datum: 18:58 So 08.02.2009
Autor: pueppiii

Aufgabe
Formalisieren folgende Sätze in Prädikatenlogik und überführen der Formel in Klauselform.
a)Bäcker essen Brot nur dann, wenn sie es selbst gebacken haben.
b)Wer sein Fahrrad liebt, der schiebt (es).
c)Ohne Fleiß kein Preis(=Wer nich fleißig ist, der erhält keinen Preis)

Hallo,

ich komme mit der Formalisierung nicht richtig klar! Könnte mir bitte jemamd sagen, ob meine Ansätze richtig sind bzw. erklären, wie es funktioniert!!
Ich wär euch sehr dankbar, die Überführung in Klauselform ist das kleinste Problem.

zu a) [mm] \forall [/mm] x [mm] (B(x)\to [/mm] E(x))
zu b) [mm] \exists [/mm] x [mm] (J(x)\toF(y)\wedge [/mm] S(y))
zu c) [mm] \forall [/mm] x [mm] (\neg F(x)\to \neg [/mm] P(x))

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 23:42 So 08.02.2009
Autor: reverend

Hallo pueppiii,

Du bist auf dem richtigen Weg.

> zu a) [mm]\forall[/mm] x [mm](B(x)\to[/mm] E(x))

Vielleicht solltest Du die x noch auf Bäcker beschränken. Außerdem gilt sicher nicht allgemein, dass ein Bäcker, der Brot gebacken hat, es dann auch zwingend isst. In der Praxis werden hie und da einige der gebackenen Brote an Fremde, genannt Kunden, verkauft. ;-)

>  zu b) [mm]\exists[/mm] x [mm](J(x)\toF(y)\wedge[/mm] S(y))

Hier komme ich nicht dahinter, was Du meinst:
Es gibt mindestens eine Person, die ein Fahrrad hat und es daher liebt und schiebt? Was sind J(x), F(y) und S(y)? x die Person, y das Fahrrad, nehme ich an.
Formulieren müsstest Du: für alle Personen, die ein Fahrrad besitzen und die es lieben, gilt: sie schieben das Fahrrad.

>  zu c) [mm]\forall[/mm] x [mm](\neg F(x)\to \neg[/mm] P(x))

Das sieht ok aus.
Man würde natürlich normalerweise logisch äquivalent umformen, aber das war hier nicht gefragt.

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Grüße,
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de