www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - Prädikatenlogik Beweis
Prädikatenlogik Beweis < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prädikatenlogik Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Mo 29.05.2006
Autor: Sabine_21

Aufgabe
F, G seien beliebege Formeln der Prädikatenlogik. Bew. oder widerlegen: Falls x1, x2 nicht in G und x3, x4 nicht in F auftreten, so gilt:
[mm] \neg \exists [/mm] x1  [mm] \forall [/mm] x2 F  [mm] \to \neg \forall [/mm] x3 [mm] \exists [/mm] x4 G  [mm] \gdw \exists [/mm] x3 [mm] \forall [/mm] x2 [mm] \forall [/mm] x4 [mm] \exists [/mm] x1 ( [mm] \neg [/mm] G  [mm] \vee [/mm] F )

Hallo liebe Forum-Leser!
ich möchte das ganze nun beweisen/widerlegen, der rechte Teil ist ja schon in Pränexform, den linken teil muss ich ja noch in Pränexform bringen und aus dem  [mm] \to [/mm]  also A->B   ergibt [mm] (\neg [/mm] A  [mm] \vee [/mm] B) und somit die Quantoren nach vorne zu bringen, aber wie kann ich das ganze beweisen mit den F und G, das verwirrt mich schon ein wenig *gg*
oder kann ich das irgendwie total einfach mit einer Wahrheitstabelle lösen und mach ich mir da zu viel Aufwand
Danke Sabsi
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Prädikatenlogik Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:42 Mo 29.05.2006
Autor: mathiash

Hallo und guten Tag,

nach dem, was Du schreibst, ist ja Dein verbleibendes Problem, links die Quantoren nach vorne zu bringen.

Sicher hilfreich ist es da, sowas zu zeigen wie:

Für jede prädikatenlogische Formel F und jede Variable, die in F nicht vorkommt, gilt

[mm] F\longrightarrow \forall [/mm] xF.

Sowas kannst Du dann für das formale Überführen in Pränexform benutzen.

Gruss,

Mathias

Bezug
        
Bezug
Prädikatenlogik Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Mo 29.05.2006
Autor: jm14

Hallo Sabine,

dieses Beispiel ist leichter als es aussieht ;) Du musst lediglich die Implizierung umwandeln und dann den linken Teil durch Umformungen (siehe Inet) in Pränexform bringen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de