www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Prähilbertraum
Prähilbertraum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Prähilbertraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Do 23.01.2014
Autor: Richie1401

Aufgabe
Sei H ein reeller Hilbertraum. Man zeige, dass für je zwei Vektoren [mm] x,y\in{H} [/mm] die folgenden Aussagen äquivalent sind:

i) [mm] x\perp{y} [/mm]
ii) [mm] \Vert{x+y}\Vert^2=\Vert{x}\Vert^2+\Vert{y}\Vert^2 [/mm]
iii) [mm] \Vert{x+y}\Vert=\Vert{x-y}\Vert [/mm]

Hallo,

ich habe leider ein Brett vorm Kopf. Kann es mir jemand wegnehmen?

Die Aussagen [mm] i)\Rightarrow [/mm] ii) und [mm] iii)\Rightarrow [/mm] i) sind kein Problem.

Nur bei [mm] ii)\Rightarrow [/mm] iii) hängt es. Habe schon versucht [mm] \Vert{x+y}\Vert\ge\Vert{x-y}\Vert [/mm]   und   [mm] \Vert{x+y}\Vert\le\Vert{x-y}\Vert [/mm]   zu zeigen. Doch das klappt nicht so, wie ich es wollte.
Wenn ich die Ausdrücke einmal ausschreibe, dann müsste ich immer wieder auf die Aussage i) zurückgreifen, um letztendlich das gewünschte Ergebnis zu zeigen.

Kann mir jemand einen Tipp geben, wie ich meine Überlegungen ansetzen kann?

Vielen Dank.

        
Bezug
Prähilbertraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Do 23.01.2014
Autor: fred97


> Sei H ein reeller Hilbertraum. Man zeige, dass für je zwei
> Vektoren [mm]x,y\in{H}[/mm] die folgenden Aussagen äquivalent
> sind:
>  
> i) [mm]x\perp{y}[/mm]
>  ii) [mm]\Vert{x+y}\Vert^2=\Vert{x}\Vert^2+\Vert{y}\Vert^2[/mm]
>  iii) [mm]\Vert{x+y}\Vert=\Vert{x-y}\Vert[/mm]
>  Hallo,
>  
> ich habe leider ein Brett vorm Kopf. Kann es mir jemand
> wegnehmen?

Gerne. Es gelte also ii)

Dann ist [mm] ||x-y||^2=||x+(-y)||^2=||x||^2+||-y||^2. [/mm]

Jetzt nimmst Du wahrscheinlich das Brett, das ich Dir vom Kopf geschraubt habe, und haust es Dir an die Stirn, mit den Worten: " mein Gott bin ich..."

Mach Dir nix draus, solche Hänger hat jeder ab und zu.

Neulich ist mir folgendes passiert: da hat jemand eine Behauptung aufgestellt: " ist G ein einfach zusammenhängendes Gebiet in [mm] \IC. [/mm] Dann gilt blablablubber."

Ich hab sofort gesagt: "das stimmt nicht, denn ich hab ein Gegenbeispiel: sei G= [mm] \IC \setminus \{0\}.... [/mm] "

mein Gegenüber hat mich sofort unterbrochen: " dein G ist nicht einfach zusammenhängend ... "

Und Recht hatte er !

Und das ist mir passiert. In meinen Vorlesungen zur Funktionentheorie bringe ich immer mehrere Charakterisierungen von einfach zusammenhängenden Gebieten ( über Homotopie, Homologie, .....).

Was ich sagen will: das mit  G= [mm] \IC \setminus \{0\} [/mm] hätte mir nicht passieren dürfen ! Das war blamabel.

Aber: ..jeder greift mal ins Klo..

Grüße FRED

>  
> Die Aussagen [mm]i)\Rightarrow[/mm] ii) und [mm]iii)\Rightarrow[/mm] i) sind
> kein Problem.
>  
> Nur bei [mm]ii)\Rightarrow[/mm] iii) hängt es. Habe schon versucht
> [mm]\Vert{x+y}\Vert\ge\Vert{x-y}\Vert[/mm]   und  
> [mm]\Vert{x+y}\Vert\le\Vert{x-y}\Vert[/mm]   zu zeigen. Doch das
> klappt nicht so, wie ich es wollte.
>  Wenn ich die Ausdrücke einmal ausschreibe, dann müsste
> ich immer wieder auf die Aussage i) zurückgreifen, um
> letztendlich das gewünschte Ergebnis zu zeigen.
>  
> Kann mir jemand einen Tipp geben, wie ich meine
> Überlegungen ansetzen kann?
>  
> Vielen Dank.


Bezug
                
Bezug
Prähilbertraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:31 Do 23.01.2014
Autor: Richie1401

Hallo Fred,

> > Sei H ein reeller Hilbertraum. Man zeige, dass für je zwei
> > Vektoren [mm]x,y\in{H}[/mm] die folgenden Aussagen äquivalent
> > sind:
>  >  
> > i) [mm]x\perp{y}[/mm]
>  >  ii) [mm]\Vert{x+y}\Vert^2=\Vert{x}\Vert^2+\Vert{y}\Vert^2[/mm]
>  >  iii) [mm]\Vert{x+y}\Vert=\Vert{x-y}\Vert[/mm]
>  >  Hallo,
>  >  
> > ich habe leider ein Brett vorm Kopf. Kann es mir jemand
> > wegnehmen?
>  
> Gerne. Es gelte also ii)
>  
> Dann ist [mm]||x-y||^2=||x+(-y)||^2=||x||^2+||-y||^2.[/mm]
>  
> Jetzt nimmst Du wahrscheinlich das Brett, das ich Dir vom
> Kopf geschraubt habe, und haust es Dir an die Stirn, mit
> den Worten: " mein Gott bin ich..."

Oh Gott. Das ist wirklich peinlich.
Aber du hast Recht, manchmal ist man festgefahren.

>  
> Mach Dir nix draus, solche Hänger hat jeder ab und zu.
>  
> Neulich ist mir folgendes passiert: da hat jemand eine
> Behauptung aufgestellt: " ist G ein einfach
> zusammenhängendes Gebiet in [mm]\IC.[/mm] Dann gilt
> blablablubber."
>  
> Ich hab sofort gesagt: "das stimmt nicht, denn ich hab ein
> Gegenbeispiel: sei G= [mm]\IC \setminus \{0\}....[/mm] "
>  
> mein Gegenüber hat mich sofort unterbrochen: " dein G ist
> nicht einfach zusammenhängend ... "
>  
> Und Recht hatte er !

Haha, kenne ich zu gut. Peinlich ist es, wenn der Dozent Behauptungen aufstellt und der Student berichtigt. Unangenehme Situation.

Aber es gilt ja:

http://www.youtube.com/watch?v=WvgDtcmv-BQ



Danke dir Fred. Das Brett ist weg und kann jetzt verfeuert werden - die Temperaturen sinken...

Grüße!

>
> Und das ist mir passiert. In meinen Vorlesungen zur
> Funktionentheorie bringe ich immer mehrere
> Charakterisierungen von einfach zusammenhängenden Gebieten
> ( über Homotopie, Homologie, .....).
>  
> Was ich sagen will: das mit  G= [mm]\IC \setminus \{0\}[/mm] hätte
> mir nicht passieren dürfen ! Das war blamabel.
>  
> Aber: ..jeder greift mal ins Klo..
>  
> Grüße FRED
>  >  
> > Die Aussagen [mm]i)\Rightarrow[/mm] ii) und [mm]iii)\Rightarrow[/mm] i) sind
> > kein Problem.
>  >  
> > Nur bei [mm]ii)\Rightarrow[/mm] iii) hängt es. Habe schon versucht
> > [mm]\Vert{x+y}\Vert\ge\Vert{x-y}\Vert[/mm]   und  
> > [mm]\Vert{x+y}\Vert\le\Vert{x-y}\Vert[/mm]   zu zeigen. Doch das
> > klappt nicht so, wie ich es wollte.
>  >  Wenn ich die Ausdrücke einmal ausschreibe, dann
> müsste
> > ich immer wieder auf die Aussage i) zurückgreifen, um
> > letztendlich das gewünschte Ergebnis zu zeigen.
>  >  
> > Kann mir jemand einen Tipp geben, wie ich meine
> > Überlegungen ansetzen kann?
>  >  
> > Vielen Dank.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de