www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Primelement und Irreduzible
Primelement und Irreduzible < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primelement und Irreduzible: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Do 04.08.2016
Autor: Mathe-Lily

Aufgabe
In einem Hauptidealring sind die Primelemente genau die irreduziblen Elemente.

Hallo!

Im Beweis zu diesem Satz steht als erster Satz:
"Wir müssen nur zeigen, dass jedes irreduzible Element ein Primelement ist."
Das heißt wohl, dass es offensichtlich sein sollte, dass ein Primelement im Hauptidealring irreduzibel ist, oder?

Salopp gesagt ist ein
- Primelement ein Element, das, wenn es ein Produkt teilt, auch mindestens einen der Faktoren teilt
- irreduzibles Element, ein Element, das nur durch ein Produkt dargestellt werden kann, bei dem ein Faktor eine Einheit ist
- Hauptidealring ein Ring, in dem alle Ideale Hauptideale sind, dh von nur einem Element aufgespannt werden.

Hab ich das richtig verstanden?

Irgendwie erschließt sich mir aus den Definitionen nicht, warum ein Primelement im HIR immer ein irreduzibles Element ist. Was übersehe ich? :-/

Liebe Grüße,
Lily

        
Bezug
Primelement und Irreduzible: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Do 04.08.2016
Autor: hippias


> In einem Hauptidealring sind die Primelemente genau die
> irreduziblen Elemente.
>  Hallo!
>  
> Im Beweis zu diesem Satz steht als erster Satz:
>  "Wir müssen nur zeigen, dass jedes irreduzible Element
> ein Primelement ist."
>  Das heißt wohl, dass es offensichtlich sein sollte, dass
> ein Primelement im Hauptidealring irreduzibel ist, oder?
>  
> Salopp gesagt ist ein
>  - Primelement ein Element, das, wenn es ein Produkt teilt,
> auch mindestens einen der Faktoren teilt
>  - irreduzibles Element, ein Element, das nur durch ein
> Produkt dargestellt werden kann, bei dem ein Faktor eine
> Einheit ist
>  - Hauptidealring ein Ring, in dem alle Ideale Hauptideale
> sind, dh von nur einem Element aufgespannt werden.
>  
> Hab ich das richtig verstanden?

Alles richtig.

>  
> Irgendwie erschließt sich mir aus den Definitionen nicht,
> warum ein Primelement im HIR immer ein irreduzibles Element
> ist. Was übersehe ich? :-/

Rechne es einfach:
1. stelle ein Primelement als ein Produkt dar

2. wende die definierende Eigenschaft des Primelements an

3. kürze (warum geht das?)

4. schlussfolgere, dass einer der Faktoren eine Einheit ist

>  
> Liebe Grüße,
>  Lily


Bezug
                
Bezug
Primelement und Irreduzible: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 Fr 05.08.2016
Autor: Mathe-Lily

Hallo!
Vielen Dank erstmal für die schnelle Antwort!

>  Rechne es einfach:
> 1. stelle ein Primelement als ein Produkt dar

Sei p=ab prim und teilt ab

>
> 2. wende die definierende Eigenschaft des Primelements an

ich bin mir nicht sicher, wie ich dies an dieser Stelle machen soll. Ich habe es mal so probiert:

[mm] \gdw \bruch{p}{p}=\bruch{ab}{p}=\bruch{a}{p}b [/mm]
[mm] \gdw 1=\bruch{a}{p}b [/mm]

>  
> 3. kürze (warum geht das?)

[mm] \bruch{a}{p}=n [/mm] mit n [mm] \in \IZ, [/mm] da p | ab und daraus folgt dass p | a

>  
> 4. schlussfolgere, dass einer der Faktoren eine Einheit
> ist

wir haben jetzt also stehen: 1=nb, also ist b eine Einheit

??
Irgendwie ist das doch nicht richtig, oder? Ich hab zB gar nicht verwendet, dass wir im HIR sind...?

Kann mir vielleicht nochmal jemand helfen?
  
Liebe Grüße,
Lily  


Bezug
                        
Bezug
Primelement und Irreduzible: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Fr 05.08.2016
Autor: hippias


> Hallo!
>  Vielen Dank erstmal für die schnelle Antwort!
>  
> >  Rechne es einfach:

> > 1. stelle ein Primelement als ein Produkt dar
>
> Sei p=ab prim und teilt ab

Besser: sei $p= ab$. Insbesondere teilt $p$ das Produkt $ab$.

>  >

> > 2. wende die definierende Eigenschaft des Primelements an
>  
> ich bin mir nicht sicher, wie ich dies an dieser Stelle
> machen soll.

Da $ab$ von $p$ geteilt wird etc.

> Ich habe es mal so probiert:
>  
> [mm]\gdw \bruch{p}{p}=\bruch{ab}{p}=\bruch{a}{p}b[/mm]
>  [mm]\gdw 1=\bruch{a}{p}b[/mm]

Vorsicht: $p$ besitzt sicher kein Inverses im Ring (sonst wäre $p$ nicht prim)!

>  
> >  

> > 3. kürze (warum geht das?)

Sei z.B. $a= pa'$. Dann ist $p= pa'b$. Wieso kann man jetzt $p$ kürzen?

>  
> [mm]\bruch{a}{p}=n[/mm] mit n [mm]\in \IZ,[/mm] da p | ab und daraus folgt
> dass p | a
> >  

Nein. Erstens glaube ich nicht, dass $R= [mm] \IZ$ [/mm] ist, sondern beliebiger. Aussderdem folgt aus $p|ab$ nicht unbedingt $p|a$; allenfalls folgt oBdA $p|a$.

> > 4. schlussfolgere, dass einer der Faktoren eine Einheit
> > ist
>  
> wir haben jetzt also stehen: 1=nb, also ist b eine Einheit

Im Prinzip richtig.

>  
> ??
>  Irgendwie ist das doch nicht richtig, oder? Ich hab zB gar
> nicht verwendet, dass wir im HIR sind...?

Die Aussage prim [mm] $\Rightarrow$ [/mm] irreduzibel gilt allgemeiner. Die Umkehrung braucht die schärfere Bedingung.

>  
> Kann mir vielleicht nochmal jemand helfen?
>    
> Liebe Grüße,
>  Lily  
>  


Bezug
                                
Bezug
Primelement und Irreduzible: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 Fr 05.08.2016
Autor: Mathe-Lily

Aha! Ich glaube, ich habe es verstanden. Zur Sicherheit:

Behauptung: in einem Hauptidealring R ist jedes Primelement irreduzibel.

Beweis:
Sei p=ab. Insbesondere gilt: p|ab und p ist prim.
Da p prim kann man oBdA annehmen: p|a.
Daraus folgt: es ex. ein a'  [mm] \in [/mm] R sodass: a=pa'
Multipliziere beide Seiten mit b: [mm] \Rightarrow [/mm] ab=pa'b
Da p=ab: [mm] \Rightarrow [/mm] p=pa'b.
Nun kann man p kürzen, da p [mm] \not= [/mm] 0 (Def. von prim) und wegen der Kürzungsregel in Integritätsringen.
[mm] \Rightarrow [/mm] 1=a'b
Und damit ist b eine Einheit, wodurch die Irreduzibilität bewiesen wurde.

Stimmt das so?

Und das heißt, die Behauptung gilt in allen Integritätsringen, da man nur die Nullteilerfreiheit braucht, oder?

Liebe Grüße,
Lily

Bezug
                                        
Bezug
Primelement und Irreduzible: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Fr 05.08.2016
Autor: hippias


> Aha! Ich glaube, ich habe es verstanden. Zur Sicherheit:
>  
> Behauptung: in einem Hauptidealring R ist jedes Primelement
> irreduzibel.
>
> Beweis:
> Sei p=ab. Insbesondere gilt: p|ab und p ist prim.
>  Da p prim kann man oBdA annehmen: p|a.
>  Daraus folgt: es ex. ein a'  [mm]\in[/mm] R sodass: a=pa'
>  Multipliziere beide Seiten mit b: [mm]\Rightarrow[/mm] ab=pa'b
> Da p=ab: [mm]\Rightarrow[/mm] p=pa'b.
>  Nun kann man p kürzen, da p [mm]\not=[/mm] 0 (Def. von prim) und
> wegen der Kürzungsregel in Integritätsringen.
>  [mm]\Rightarrow[/mm] 1=a'b
>  Und damit ist b eine Einheit, wodurch die Irreduzibilität
> bewiesen wurde.
>  
> Stimmt das so?

Das ist alles in Ordnung.

>  
> Und das heißt, die Behauptung gilt in allen
> Integritätsringen, da man nur die Nullteilerfreiheit
> braucht, oder?

Ja.

>  
> Liebe Grüße,
>  Lily

Das war der Teil, der von den Autoren als trivial angesehen wurde...

Bezug
                                                
Bezug
Primelement und Irreduzible: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:24 Sa 06.08.2016
Autor: Mathe-Lily


> Das war der Teil, der von den Autoren als trivial angesehen
> wurde...

Wie schön -.-

Vielen Dank für deine Hilfe bei dieser trivialen Aufgabe :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de