www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Primideal
Primideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primideal: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:09 Sa 02.01.2010
Autor: StefanK.

Aufgabe 1
Sei [mm] \delta [/mm] : R --> S ein Ringhomomorphismus. Zeigen Sie, dann wenn [mm] \alpha \subset [/mm] S ein Primideal ist, dass ist [mm] \delta^{-1}(\alpha) [/mm] = {r [mm] \in [/mm] R | [mm] \delta(r) \in \alpha [/mm] } ein Primideal in R

Aufgabe 2
Sei p [mm] ?\in [/mm] Z Primzahl, n [mm] \ge [/mm] 1. Was sind die Primideale von [mm] Z/p^n [/mm] ?
(Hinweis: benutzen Sie Teil 1)

Hallo Leute,
bei der Aufgabe komme ich einfach nicht weiter. Durch den Isomorphismus ist die bijektivität ja gegeben, aber ich kann den Zusammenhang leider nicht formal aufschreiben. Kann mir da jemand bei helfen?
Teil 2 müsste sich demnach ja aus Teil 1 ableiten - nur habe ich überhaupt keine Ahnung wie. Ich habe doch keinen Isomorphismus gegeben?! - Oder ist gemeint, dass es einen Isomorphismus von Z --> [mm] p^n [/mm] gibt?

Danke schonmal im Voraus

Viele Grüße
Stefan

        
Bezug
Primideal: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 00:04 So 03.01.2010
Autor: tobit09

Hallo Stefan,

bei Aufgabe 1 taucht überhaupt kein Isomorphismus auf, sondern lediglich ein Homomorphismus.

Um zu zeigen, dass [mm]\delta^{-1}(\alpha)[/mm] ein Primideal ist, musst du zwei Eigenschaften prüfen:
1. [mm]\delta^{-1}(\alpha)[/mm] ist echte Teilmenge von R
2. Wenn [mm]a,b\in R[/mm] sind und [mm]ab\in\delta^{-1}(\alpha)[/mm], so ist bereits [mm]a\in\delta^{-1}(\alpha)[/mm] oder [mm]b\in\delta^{-1}(\alpha)[/mm].

zu 1.: Du musst also ein Element von R finden, dass nicht in [mm]\delta^{-1}(\alpha)[/mm] ist. Es gibt da so ein besonderes Element, das in keinem Ideal drin liegt, dass eine echte Teilmenge eines Ringes ist...

zu 2.: Versuche die Primidealeigenschaft von [mm]\alpha[/mm] auf [mm]\delta(a)[/mm] und [mm]\delta(b)[/mm] anzuwenden.

Viele Grüße
tobit09

Bezug
        
Bezug
Primideal: Aufgabe 2 Verweis
Status: (Antwort) fertig Status 
Datum: 22:37 So 03.01.2010
Autor: tobit09

Hallo nochmal,

falls du noch an einer Antwort interessiert sein solltest, hilft vielleicht folgendes weiter: https://matheraum.de/read?i=637029.

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de