www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Primring, Primkörper
Primring, Primkörper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primring, Primkörper: endliche Körper
Status: (Frage) beantwortet Status 
Datum: 09:53 Mi 16.10.2013
Autor: Ellie123

Hallo,
meine Frage bezieht sich auf den Primring bzw. den Primkörper eines endlichen Körpers [mm] \IF_p_^n [/mm] (p Primzahl, n [mm] \in \IN). [/mm]
Und zwar ist ja ein Primring von einem Ring gleich der Menge [mm] \IZ [/mm] e (wobei e das neutrale Element der Ringmultiplikation ist) und dies ist ja der kleinste Unterring des gegebenen Ringes.
Der Primkörper eines Körpers [mm] \IK [/mm] ist ja wohl auch der kleinste Unterkörper, der in [mm] \IK [/mm] enthalten ist.

Jetzt meine Frage: Wenn ich einen endlichen Körper [mm] \IF_p_^n [/mm] gegeben habe, ist dann die Menge des Primringes automatisch gleich der Menge des Primkörpers von [mm] \IF_p_^n? [/mm] Ich denke, dass die Menge des Primkörpers nicht kleiner sein kann als die des Primringes, denn ein Körper ist ja immer auch ein kommutativer Ring. Aber könnte die Menge des Primkörpers nicht größer sein als die des Primringes?


Also meine Frage nochmal auf den Punkt gebracht:
Sind Primring und Primkörper eines endlichen Körpers immer identisch?

Viele Grüße,
Ellie :)

        
Bezug
Primring, Primkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Mi 16.10.2013
Autor: tobit09

Hallo Ellie123,


> meine Frage bezieht sich auf den Primring bzw. den
> Primkörper eines endlichen Körpers [mm]\IF_p_^n[/mm] (p Primzahl,
> n [mm]\in \IN).[/mm]
>  Und zwar ist ja ein Primring von einem Ring
> gleich der Menge [mm]\IZ[/mm] e (wobei e das neutrale Element der
> Ringmultiplikation ist) und dies ist ja der kleinste
> Unterring des gegebenen Ringes.
>  Der Primkörper eines Körpers [mm]\IK[/mm] ist ja wohl auch der
> kleinste Unterkörper, der in [mm]\IK[/mm] enthalten ist.

Ja.

> Jetzt meine Frage: Wenn ich einen endlichen Körper
> [mm]\IF_p_^n[/mm] gegeben habe, ist dann die Menge des Primringes
> automatisch gleich der Menge des Primkörpers von [mm]\IF_p_^n?[/mm]
> Ich denke, dass die Menge des Primkörpers nicht kleiner
> sein kann als die des Primringes, denn ein Körper ist ja
> immer auch ein kommutativer Ring.

Ja.

Mit dieser Überlegung ergibt sich sogar, dass der Primring jedes (!) Körpers ein Unterring des entsprechenden Primkörpers ist.

> Aber könnte die Menge
> des Primkörpers nicht größer sein als die des
> Primringes?
>
> Also meine Frage nochmal auf den Punkt gebracht:
>  Sind Primring und Primkörper eines endlichen Körpers
> immer identisch?

Ja.

Allgemeiner sind Primkörper und Primring genau in den Körpern identisch, die Charakteristik [mm] $\not=0$ [/mm] haben.


Primringe und Primkörper lassen sich in kommutativen Ringen mit 1 bzw. Körpern übrigens explizit charakterisieren:

Sei $R$ ein kommutativer Ring mit 1 (z.B. ein Körper) der Charakteristik [mm] $m\in\IN_0$ [/mm] mit neutralem Element e bezüglich der Multiplikation.
Dann ist der Primring von $R$ isomorph zu [mm] $\IZ/m\IZ$. [/mm]
Der (eindeutig bestimmte) Isomorphismus zwischen diesen Ringen ist gegeben durch [mm] $\IZ/m\IZ\to R,\quad m+\IZ\mapsto [/mm] m*e$.

Falls $R$ ein Körper der Charakteristik $p$ für eine Primzahl $p$ ist, ist somit der Primring von $R$ isomorph zu [mm] $\IZ/p\IZ=\IF_p$. [/mm]
Insbesondere ist dieser Primring schon ein Körper.
Damit stimmen Primring und Primkörper überein.

Falls $R$ ein Körper der Charakteristik $0$ ist, ist der Primring P von $R$ isomorph zu [mm] $\IZ/0\IZ$, [/mm] also zu [mm] $\IZ$. [/mm]
Der eindeutig bestimmte Isomorphismus ist gegeben durch [mm] $\IZ\to P,\quad n\mapsto [/mm] n*e$
Der Primkörper $K$ von $R$ ist isomorph zu [mm] $\IQ$. [/mm]
Der wiederum eindeutig bestimmte Isomorphismus ist gegeben durch [mm] $\IQ\to K,\quad\bruch{n}{m}\mapsto(n*e)*(m*e)^{-1}$. [/mm]


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de