www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Primzahlen
Primzahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primzahlen: Aufgabe und Frage
Status: (Frage) beantwortet Status 
Datum: 16:56 Mi 08.11.2006
Autor: maggi20

Aufgabe
SEi n eine natürlich Zahl, welche grösser ist als 2.
Welche der Zahlen n!-1, n!, n!+2, n!+3,...n!+n, n!+(n+1) sind für gewisse n Primzahlen? KÖnnen Sie n aufeinanderfolgende Zahlen konstruieren, die alle keine Primzaheln sind?

Hallo,
ich bräuchte dringend Hilfe. Ich verstehe übethaupt nicht was das Ausrufezeichen bedeutet...das hatten wir noch nie. Und dann muss ich doch für n nur Zahlen von 1 bis 9 einsetzen und schauen ob eine Primzahl rauskommt oder nicht, oder? Und zum SChluss eine Formel auf die gleiche Art und Weise erstellen, die keien Primzaheln enthält, wenn man für n etwas einsetzt.
Könnte mir bitte jemand helfen. Ich muss das morgen abgeben.
LG
Maggi

        
Bezug
Primzahlen: n!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:09 Mi 08.11.2006
Autor: zahlenspieler

Hallo maggi20,
für natürliche Zahlen und 0 ist [mm]n!=\left{\begin{matrix} 1&\mbox{für }&n=0 \\ 1\cdot 2 \cdot\ldots\cdot n& \mbox{sonst.} \end{matrix}[/mm]. Gesprochen: "n Fakultät".
Sonst bin ich was die Aufgabe angeht etwas ratlos.
Mfg
zahlenspieler

Bezug
        
Bezug
Primzahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Mi 08.11.2006
Autor: luis52

Hallo Magda,

keine der Zahlen $n!+m$, [mm] $2\le m\le [/mm] n$ ist eine Primzahl, da $m$
sowohl $n!$, als auch $m$ teilt. Offenbar ist auch $n!$ keine
Primzahl. Bleibt $n!-1$ und $n!+(n+1)$. Fuer $n=3,4,6,7$ ist $n!-1$
eine Primzahl, fuer $n=2,4,6$ ist $n!+n+1$ eine Primzahl.


Mit dem Zusatz der Aufgabe kann ich leider nichts anfangen.

hth


Bezug
        
Bezug
Primzahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:17 Mi 08.11.2006
Autor: leduart

Hallo maggi
Zur Wiederholung: 4!=1*2*3*4. Damit ind alle Zahlen n! keine Primzahl, weil sie ja durch alle Zahlen <n teilbar ist.
4!+1 ist aber sicher nicht durch 2,3,4 teilbar, ist aber trotzdem nicht sicher eine Primzahl, weil sie ja durch eine größere Zahl als 2,3,4 teilbar sein könnte (nicht muss! 4!+1 ist durch 5 telbar. aber 4!-1 ist auch nicht durch 2,3,4 teilbar, es ist wirklich ne Primzahl.
5!=120 5!-1=119 Primzahl. sicher weiss man aber nur, dass es nicht durch die Zahlen 2 bis 5 teilbar ist, und bei allen Divisionen durch diese Zahlen den Rest -1 lässt.
n! ist immer durch 2 teilbar wenn [mm] n\ge [/mm] 2, deshalb auch n!+2 überleg dir selbst, dass n!+3 keine Primzahl sein kann. (wenn [mm] n\ge [/mm] 3)
nach dem Rezept kannst du jetzt n aufeinanderfolgende Zahlen konstruieren, die KEINE Primzahlen sind. weisst du wie?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de